Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Allografting

CsA 2-h concentration correlates best with area under the concentration–time curve after allo-SCT compared with trough CsA

Abstract

The relationship between CsA levels and area under the curve (AUC) in allo-SCT recipients, and the effect of age, concomitant use of steroid and MDR-1 polymorphism on this relationship remain largely unexplored. Steady-state CsA blood concentrations at time 0 (C0), 1 (C1), 1.5 (C1.5), 2 (C2), 3 (C3), 4 (C4), 6 (C6), 8 (C8) and 12 (C12) h post oral CsA dose were taken from 27 consenting allo-SCT recipients (receiving myeloablative or non-myeloablative conditioning) at D15–D25 (all participants) and D40–D80 (participants with myeloablative conditioning). The CsA AUC0−4h, AUC0−8h and AUC0−12h were determined using trapezoidal rule, and the relationships between AUCs and CsA concentrations at various time points were examined. Poor correlation was observed between C0 and AUC0−4h (r2=0.15), AUC0−8h (r2=0.21) and AUC0−12h (r2=0.53). C2 was better correlated with AUC0−4h (r2=0.88), AUC0−8h (r2=0.76) and AUC0−12h (r2=0.83). The aforementioned factors did not influence the observed relationship. CsA levels taken at 2 h post oral CsA administration may represent the optimal time point for monitoring the biological effects of calcineurin inhibitors in allo-SCT recipients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Halloran PF, Helms LMH, Kung L, Noujaim J . The temporal profile of calcineurin inhibition by cyclosporine in vivo. Transplantation 1999; 68: 1356–1361.

    Article  CAS  PubMed  Google Scholar 

  2. Shultz KR, Nevill TJ, Balshaw RF, Toze CL, Corr T, Currie CJ et al. Effect of gastrointestinal inflammation and age on the pharmacokinetics of oral microemulsion cyclosporine A in the first month after bone marrow transplantation. Bone Marrow Transplant 2000; 26: 545–551.

    Article  Google Scholar 

  3. Kahan BD, Welsh M, Schoenberg L, Rutzsky LP, Katz SM, Urbauer DL et al. Variable oral absorption of transplant recipients using cyclosporine. A biopharmaceutical risk factor for chronic renal allograft rejection. Transplantation 1996; 62: 599–606.

    Article  CAS  PubMed  Google Scholar 

  4. Warrens AN, Salama A, Waters JB, Lechler RI . Comparison of Neoral and Sandimmune preparation in renal transplant patients – Improved pharmacokinetics with Neoral. Transplant Proc 1996; 28: 2169–2170.

    CAS  PubMed  Google Scholar 

  5. Duncan N, Craddock C . Optimizing the use of cyclosporine in allogeneic stem cell transplantation. Bone Marrow Transplant 2006; 38: 169–174.

    Article  CAS  PubMed  Google Scholar 

  6. Wingard JR, Nash RA, Przepiorka D, Klein JL, Weisdorf DJ, Fay JW et al. Relationship of tacrolimus (FK506) whole blood concentrations and efficacy and safety after HLA-identical sibling bone marrow transplantation. Bone Marrow Transplant 1998; 4: 157–163.

    Article  CAS  Google Scholar 

  7. Kennedy MS, Yee GC, McGuire TR, Leonard TM, Crowley JJ, Deeg HJ . Correlation of serum cyclosporine concentration with renal dysfunction in marrow transplant recipients. Transplantation 1986; 40: 249–253.

    Article  Google Scholar 

  8. Kahan BD, Grevel J . Optimization of cyclosporine therapy in renal transplantation by a pharmacokinetic strategy. Transplantation 1988; 46: 631–644.

    Article  CAS  PubMed  Google Scholar 

  9. Cantarovich M, Ross H, Arizón JM, Gómez MA, Straatman L, Orús J et al. Benefit of Neoral C2 monitoring in de novo cardiac transplant recipients receiving basiliximab induction. Transplantation 2008; 85: 992–999.

    Article  CAS  PubMed  Google Scholar 

  10. Caforio AL, Tona F, Piaserico S, Gambino A, Feltrin G, Fortina AB et al. C2 is superior to C0 as predictor of renal toxicity and rejection risk profile in stable heart transplant recipients. Transpl Int 2005; 18: 116–124.

    Article  PubMed  Google Scholar 

  11. Cantarovich M, Levy G, Burra P, Cavallari A, Duvoux C, Lake J et al. Improved clinical outcomes for liver transplant recipients using cyclosporine monitoring based on 2-hr post-dose levels (C2). Transplantation 2002; 73: 953–959.

    Article  Google Scholar 

  12. Morris RG, Russ GR, Cervelli MJ, Juneja R, McDonald SP, Matthew TH . Comparison of trough, 2-h, and limited AUC blood sampling for monitoring cyclosporine (Neoral) at day 7 post-renal transplantation and incidence of rejection in the first month. Ther Drug Monit 2002; 24: 479–486.

    Article  CAS  PubMed  Google Scholar 

  13. Kim SJ, Prasad GVR, Huang M, Nash MM, Famure O, Park J et al. A comparison of the effects of C2-cyclosporine and C0-tacrolimus on renal function and cardiovascular risk factors in kidney transplant recipients. Transplantation 2006; 82: 924–930.

    Article  CAS  PubMed  Google Scholar 

  14. Kyllomen LE, Salmela KT . Early cyclosporine C0 and C2 monitoring in de novo kidney transplant patients: a prospective randomized single-centre pilot study. Transplantation 2006; 81: 1010–1015.

    Article  Google Scholar 

  15. Hendriks MP, Blijlevens NMA, Schattenberg AVMB, Burger DM, Donnelly JP . Cyclosporin short infusion and C2 monitoring in haematopoietic stem cell transplant recipients. Bone Marrow Transplant 2006; 38: 521–525.

    Article  CAS  PubMed  Google Scholar 

  16. Barkholt L, Remberger M, Bodeard H, Ringdên O, Bőttiger Y . Cyclosporin A (CsA) 2-h concentrations vary between patients without correlation to graft-versus-host disease after allogeneic haematopoietic stem cell transplantation. Bone Marrow Transplant 2007; 40: 683–689.

    Article  CAS  PubMed  Google Scholar 

  17. Yee GC, Lennon TP, Gmur DG, Carlin J, Schaffer RL, Kennedy MS et al. Clinical pharmacology of cyclosporine in patients undergoing bone marrow transplantation. Transplant Proc 1986; 18: 153–159.

    CAS  PubMed  Google Scholar 

  18. Bonhomme-Faivre L, Devocelle A, Saliba F, Chatled S, Maccario J, Farinotti R et al. MDR-1 C3435T polymorphism influences cyclosporine A dose requirements in liver transplant recipients. Transplantation 2004; 78: 21–25.

    Article  CAS  PubMed  Google Scholar 

  19. Lam S, Nilufar P, Ting LSL, Ensom MHH . Corticosteroid interactions with cyclosporine, tacrolimus, mycophenolate, and sirolumus: fact or fiction? Ann Pharmacother 2008; 42: 1037–1047.

    Article  CAS  PubMed  Google Scholar 

  20. Saad AH, DePeste DD, Carver PL . Factors influencing the magnitude and clinical significance of drug interactions between azole antifungals and select immunosuppressants. Pharmacotherapy 2006; 26: 1730–1744.

    Article  CAS  PubMed  Google Scholar 

  21. Ruutu T, Volin L, Parkkali T, Jubonen E, Elonen E . Cyclosporine, methotrexate, and methylprednisolone compared with cyclosporine and methotrexate for the prevention of graft-versus-host disease in bone marrow transplantation from HLA-identical sibling donor: a prospective randomized study. Blood 2000; 96: 2391–2398.

    CAS  PubMed  Google Scholar 

  22. Loor R, Pope L, Boyd R, Wood K, Bodepudi V . Monitoring cyclosporine of pre-dose and post-dose samples using nonextraction homogeneous immunoassay. Ther Drug Monit 2004; 26: 58–67.

    Article  CAS  PubMed  Google Scholar 

  23. Chapter 1. Review of mathematical fundamentals. In: Shargel L, Yu ABC (eds). Applied Biopharmaceutics and Pharmacokinetics, 3rd edn. Appleton & Lange: Stamford, CT, 1993, pp 6–9.

  24. David OJ, Johnston A . Limited sampling strategies for estimating cyclosporine area under the concentration-time curve: review of current algorithms. Ther Drug Monit 2001; 23: 100–114.

    Article  CAS  PubMed  Google Scholar 

  25. International Neoral Renal Transplantation Study Group. Cyclosporin microemulsion (Neoral®) absorption profiling and sparse-sample predictors during the first 3 months after renal transplantation. Am J Transplant 2002; 2: 148–156.

    Article  Google Scholar 

  26. Lück R, Böger E, Kuse E, Klempnauer J, Nashan B . Achieving adequate cyclosporine exposure in liver transplant recipients: a novel strategy for monitoring and dosing using intravenous therapy. Liver Transpl 2004; 10: 686–691.

    Article  PubMed  Google Scholar 

  27. Knoop C, Vervier I, Thiry P, De Backer M, Kovarik JM, Rousseau A et al. Cyclosporine pharmacokinetics and dose monitoring after lung transplantation: comparison between cystic fibrosis and other conditions. Transplantation 2003; 76: 683–688.

    Article  CAS  PubMed  Google Scholar 

  28. Mahalati K, Belitsky P, Sketris I, West K, Panek R . Neoral monitoring by simplified sparse sampling area under the concentration-time curve. Transplantation 1999; 68: 55–62.

    Article  CAS  PubMed  Google Scholar 

  29. Jaksch P, Kocher A, Neuhauser P, Sarahrudi K, Seweryn J, Wisser W et al. Monitoring C2 level predicts exposure in maintenance lung transplant patients receiving the microemulsion formulation of cyclosporine (Neoral). J Heart Lung Transplant 2005; 24: 1076–1080.

    Article  PubMed  Google Scholar 

  30. Kovarik JM, Hoyer PF, Ettenger R, Punch J, Soergel M . Cyclosporine absorption profiles in pediatric kidney and liver transplant patients. Pediatr Nephrol 2003; 18: 1275–1279.

    Article  CAS  PubMed  Google Scholar 

  31. Cantarovich M, Barkun JS, Tchervenkov JI, Besner JG, Aspeslet L, Metrakos P . Comparison of Neoral dose monitoring with cyclosporine trough levels versus 2-hr postdose levels in stable liver transplantation. Transplantation 1998; 66: 1621–1627.

    Article  CAS  PubMed  Google Scholar 

  32. Levy G, Thervet E, Lake J, Uchida K . Patient management by Neoral C2 monitoring: an international consensus statement. Transplantation 2002; 73: S12–S18.

    Article  PubMed  Google Scholar 

  33. Vincenti F, Mendez R, Curtis J, Light J, Pearson T, Wu Y-M et al. A multicentre, prospective study of C2-monitored cyclosporine microemulsion in a US population of denovo renal transplant recipients. Transplantation 2005; 80: 910–916.

    Article  CAS  PubMed  Google Scholar 

  34. Nashan B, Bock A, Bosmans J-L, Budde K, de Fijter H, Jaques B et al. Use of Neoral C2 monitoring: a European consensus. Transpl Int 2005; 18: 768–778.

    Article  CAS  PubMed  Google Scholar 

  35. Morris RG, Ilett KF, Tett SE, Ray JE, Fullinfaw RO, Cooke R et al. Cyclosporin monitoring in Australasia: 2002 update of consensus guidelines. Ther Drug Monit 2002; 24: 677–688.

    Article  CAS  PubMed  Google Scholar 

  36. Genestier L, Fournel S, Flacher M, Assossou O, Revillard J-P, Bonnefoy-Berard N . Induction of Fas (Apo-1, CD95)-mediated apoptosis of activated lymphocytes by polyclonal antithymocyte globulin. Blood 1998; 91: 2360–2368.

    CAS  PubMed  Google Scholar 

  37. Delaney MP, Smythe E, Higgins RM, Morris AG . Constitutive and acquired resistance to calcineurin inhibitors in renal transplantation: role of P-glycoprotein-170. Transpl Int 2000; 13: 276–284.

    Article  CAS  PubMed  Google Scholar 

  38. Sanquer S, Schwarzinger M, Maury S, Yakouben K, Rafi H, Pautas C et al. Calcineurin activity as a therapeutic index of immunosuppression: a functional, pharmacodynamic approach for GVHD. Transplantation 2004; 77: 854–858.

    Article  CAS  PubMed  Google Scholar 

  39. Sommerer C, Giese T, Schmidt J, Meuer S, Zeier M . Ciclosporin A tapering monitored by NFAT-regulated gene expression: a new concept of individual immunosuppression. Transplantation 2008; 85: 15–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from Novartis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Grigg.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, D., Shuttleworth, P., Bailey, M. et al. CsA 2-h concentration correlates best with area under the concentration–time curve after allo-SCT compared with trough CsA. Bone Marrow Transplant 47, 54–59 (2012). https://doi.org/10.1038/bmt.2011.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2011.2

Keywords

This article is cited by

Search

Quick links