Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization

Abstract

Increasing numbers of clinical trials and animal experiments have shown that probiotic bacteria are promising tools for allergy prevention. Here, we analyzed the immunomodulatory properties of three selected lactobacillus strains and the impact of their mixture on allergic sensitization to Bet v 1 using a gnotobiotic mouse model. We showed that Lactobacillus (L.) rhamnosus LOCK0900, L. rhamnosus LOCK0908 and L. casei LOCK0919 are recognized via Toll-like receptor 2 (TLR2) and nucleotide-binding oligomerization domain-containing protein 2 (NOD2) receptors and stimulate bone marrow-derived dendritic cells to produce cytokines in species- and strain-dependent manners. Colonization of germ-free (GF) mice with a mixture of all three strains (Lmix) improved the intestinal barrier by strengthening the apical junctional complexes of enterocytes and restoring the structures of microfilaments extending into the terminal web. Mice colonized with Lmix and sensitized to the Bet v 1 allergen showed significantly lower levels of allergen-specific IgE, IgG1 and IgG2a and an elevated total IgA level in the sera and intestinal lavages as well as an increased transforming growth factor (TGF)-β level compared with the sensitized GF mice. Splenocytes and mesenteric lymph node cells from the Lmix-colonized mice showed the significant upregulation of TGF-β after in vitro stimulation with Bet v 1. Our results show that Lmix colonization improved the gut epithelial barrier and reduced allergic sensitization to Bet v 1. Furthermore, these findings were accompanied by the increased production of circulating and secretory IgA and the regulatory cytokine TGF-β. Thus, this mixture of three lactobacillus strains shows potential for use in the prevention of increased gut permeability and the onset of allergies in humans.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 4
Figure 1
Figure 2
Figure 3
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Maloy KJ, Powrie F . Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 2011; 474: 298–306.

    Article  CAS  PubMed  Google Scholar 

  2. Tlaskalova-Hogenova H, Sterzl J, Stepankova R, Dlabac V, Veticka V, Rossmann P et al. Development of immunological capacity under germfree and conventional conditions. Ann NY Acad Sci 1983; 409: 96–113.

    Article  CAS  PubMed  Google Scholar 

  3. Perrier C, Corthesy B . Gut permeability and food allergies. Clin Exp Allergy 2011; 41: 20–28.

    Article  CAS  PubMed  Google Scholar 

  4. van Ree R, Hummelshoj L, Plantinga M, Poulsen LK, Swindle E . Allergic sensitization: host-immune factors. Clin Transl Allergy 2014; 4: 12.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Artis D . Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 2008; 8: 411–420.

    Article  CAS  PubMed  Google Scholar 

  6. Tlaskalova-Hogenova H, Stepankova R, Kozakova H, Hudcovic T, Vannucci L, Tuckova L et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol 2011; 8: 110–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Penders J, Gerhold K, Stobberingh EE, Thijs C, Zimmermann K, Lau S et al. Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood. J Allergy Clin Immunol 2013; 132: 601–607.

    Article  PubMed  Google Scholar 

  8. Strachan DP . Hay fever, hygiene, and household size. BMJ 1989; 299: 1259–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E . Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol 2001; 107: 129–134.

    Article  CAS  PubMed  Google Scholar 

  10. Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC . Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy 2014; 44: 842–850.

    Article  CAS  PubMed  Google Scholar 

  11. Gourbeyre P, Denery S, Bodinier M . Probiotics, prebiotics, and synbiotics: impact on the gut immune system and allergic reactions. J Leukoc Biol 2011; 89: 685–695.

    Article  CAS  PubMed  Google Scholar 

  12. Lodinova-Zadnikova R, Cukrowska B, Tlaskalova-Hogenova H . Oral administration of probiotic Escherichia coli after birth reduces frequency of allergies and repeated infections later in life (after 10 and 20 years). Int Arch Allergy Immunol 2003; 131: 209–11.

    Article  PubMed  Google Scholar 

  13. Forsberg A, Abrahamsson TR, Bjorksten B, Jenmalm MC . Pre- and post-natal Lactobacillus reuteri supplementation decreases allergen responsiveness in infancy. Clin Exp Allergy 2013; 43: 434–442.

    Article  CAS  PubMed  Google Scholar 

  14. Borchers AT, Selmi C, Meyers FJ, Keen CL, Gershwin ME . Probiotics and immunity. J Gastroenterol 2009; 44: 26–46.

    Article  PubMed  Google Scholar 

  15. Vanderpool C, Yan F, Polk DB . Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflamm Bowel Dis 2008; 14: 1585–1596.

    Article  PubMed  Google Scholar 

  16. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003; 198: 1875–1886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Konieczna P, Groeger D, Ziegler M, Frei R, Ferstl R, Shanahan F et al. Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells. Gut 2012; 61: 354–366.

    Article  CAS  PubMed  Google Scholar 

  18. Mileti E, Matteoli G, Iliev ID, Rescigno M . Comparison of the immunomodulatory properties of three probiotic strains of Lactobacilli using complex culture systems: prediction for in vivo efficacy. PLoS One 2009; 4: e7056.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rigaux P, Daniel C, Hisbergues M, Muraille E, Hols P, Pot B et al. Immunomodulatory properties of Lactobacillus plantarum and its use as a recombinant vaccine against mite allergy. Allergy 2009; 64: 406–414.

    Article  CAS  PubMed  Google Scholar 

  20. Schwarzer M, Srutkova D, Schabussova I, Hudcovic T, Akgun J, Wiedermann U et al. Neonatal colonization of germ-free mice with Bifidobacterium longum prevents allergic sensitization to major birch pollen allergen Bet v 1. Vaccine 2013; 31: 5405–5412.

    Article  CAS  PubMed  Google Scholar 

  21. Schabussova I, Hufnagl K, Tang ML, Hoflehner E, Wagner A, Loupal G et al. Perinatal maternal administration of Lactobacillus paracasei NCC 2461 prevents allergic inflammation in a mouse model of birch pollen allergy. PLoS One 2012; 7: e40271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li MO, Flavell RA . Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10. Immunity 2008; 28: 468–476.

    Article  PubMed  Google Scholar 

  23. Akdis M, Akdis CA . Mechanisms of allergen-specific immunotherapy: multiple suppressor factors at work in immune tolerance to allergens. J Allergy Clin Immunol 2014; 133: 621–631.

    Article  CAS  PubMed  Google Scholar 

  24. Frischmeyer-Guerrerio PA, Guerrerio AL, Oswald G, Chichester K, Myers L, Halushka MK et al. TGFbeta receptor mutations impose a strong predisposition for human allergic disease. Sci Transl Med 2013; 5: 195ra94.

    Article  PubMed  PubMed Central  Google Scholar 

  25. West CE, Jenmalm MC, Prescott SL . The gut microbiota and its role in the development of allergic disease: a wider perspective. Clin Exp Allergy 2014; doi: 10.1111/cea.12332.

    Article  Google Scholar 

  26. Wiedermann U . Hitting the mucosal road in tolerance induction. Nestle Nutr Workshop Ser Pediatr Program 2009; 64: 63–72.

    Article  CAS  PubMed  Google Scholar 

  27. Schabussova I, Hufnagl K, Wild C, Nutten S, Zuercher AW, Mercenier A et al. Distinctive anti-allergy properties of two probiotic bacterial strains in a mouse model of allergic poly-sensitization. Vaccine 2011; 29: 1981–1990.

    Article  CAS  PubMed  Google Scholar 

  28. Chapman CM, Gibson GR, Rowland I . Health benefits of probiotics: are mixtures more effective than single strains? J Nutr 2011; 50: 1–17.

    CAS  Google Scholar 

  29. Hansen CH, Nielsen DS, Kverka M, Zakostelska Z, Klimesova K, Hudcovic T et al. Patterns of early gut colonization shape future immune responses of the host. PLoS One 2012; 7: e34043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cukrowska B, Motyl I, Kozakova H, Schwarzer M, Gorecki RK, Klewicka E et al. Probiotic Lactobacillus strains: in vitro and in vivo studies. Folia Microbiol 2009; 54: 533–537.

    Article  CAS  Google Scholar 

  31. Cukrowska B, Rosiak I, Klewicka E, Motyl I, Schwarzer M, Libudzisz Z et al. Impact of heat-inactivated Lactobacillus casei and Lactobacillus paracasei strains on cytokine responses in whole blood cell cultures of children with atopic dermatitis. Folia Microbiol 2010; 55: 277–280.

    Article  CAS  Google Scholar 

  32. Aleksandrzak-Piekarczyk T, Koryszewska-Baginska A, Bardowski J . Genome sequence of the probiotic strain Lactobacillus rhamnosus (formerly Lactobacillus casei) LOCK900. Genome Announc 2013; 1: 00640-13.

    Article  Google Scholar 

  33. Koryszewska-Baginska A, Bardowski J, Aleksandrzak-Piekarczyk T . Genome sequence of the probiotic strain Lactobacillus rhamnosus (formerly Lactobacillus casei) LOCK908. Genome Announc 2014; 2: 00120-14.

    Article  Google Scholar 

  34. Koryszewska-Baginska A, Aleksandrzak-Piekarczyk T, Bardowski J . Complete genome sequence of the probiotic strain Lactobacillus casei (formerly Lactobacillus paracasei) LOCK919. Genome Announc 2013; 1: e00758-13.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Repa A, Kozakova H, Hudcovic T, Stepankova R, Hrncir T, Tlaskalova-Hogenova H et al. Susceptibility to nasal and oral tolerance induction to the major birch pollen allergen Bet v 1 is not dependent on the presence of the microflora. Immunol Lett 2008; 117: 50–56.

    Article  CAS  PubMed  Google Scholar 

  36. Daniel C, Repa A, Wild C, Pollak A, Pot B, Breiteneder H et al. Modulation of allergic immune responses by mucosal application of recombinant lactic acid bacteria producing the major birch pollen allergen Bet v 1. Allergy 2006; 61: 812–819.

    Article  CAS  PubMed  Google Scholar 

  37. Cinova J, de Palma G, Stepankova R, Kofronova O, Kverka M, Sanz Y et al. Role of intestinal bacteria in gliadin-induced changes in intestinal mucosa: study in germ-free rats. PloS One 2011; 6: e16169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schneider CA, Rasband WS, Eliceiri KW . NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9: 671–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wiedermann U, Jahn-Schmid B, Bohle B, Repa A, Renz H, Kraft D et al. Suppression of antigen-specific T- and B-cell responses by intranasal or oral administration of recombinant bet v 1, the major birch pollen allergen, in a murine model of type I allergy. The J Allergy Clin Immunol 1999; 103: 1202–1210.

    Article  CAS  PubMed  Google Scholar 

  40. Wiedermann U, Herz U, Baier K, Vrtala S, Neuhaus-Steinmetz U, Bohle B et al. Intranasal treatment with a recombinant hypoallergenic derivative of the major birch pollen allergen Bet v 1 prevents allergic sensitization and airway inflammation in mice. Int Arch Allergy Immunol 2001; 126: 68–77.

    Article  CAS  PubMed  Google Scholar 

  41. Schwarzer M, Repa A, Daniel C, Schabussova I, Hrncir T, Pot B et al. Neonatal colonization of mice with Lactobacillus plantarum producing the aeroallergen Bet v 1 biases towards Th1 and T-regulatory responses upon systemic sensitization. Allergy 2011; 66: 368–375.

    Article  CAS  PubMed  Google Scholar 

  42. Kalliomaki M, Antoine JM, Herz U, Rijkers GT, Wells JM, Mercenier A . Guidance for substantiating the evidence for beneficial effects of probiotics: prevention and management of allergic diseases by probiotics. J Nutr 2010; 140: 713S–721S.

    Article  CAS  PubMed  Google Scholar 

  43. Lim LH, Li HY, Huang CH, Lee BW, Lee YK, Chua KY . The effects of heat-killed wild-type Lactobacillus casei Shirota on allergic immune responses in an allergy mouse model. Int Arch Allergy Immunol 2009; 148: 297–304.

    Article  CAS  PubMed  Google Scholar 

  44. Hisbergues M, Magi M, Rigaux P, Steuve J, Garcia L, Goudercourt D et al. In vivo and in vitro immunomodulation of Der p 1 allergen-specific response by Lactobacillus plantarum bacteria. Clin Exp Allergy 2007; 37: 1286–1295.

    Article  CAS  PubMed  Google Scholar 

  45. Feleszko W, Jaworska J, Rha RD, Steinhausen S, Avagyan A, Jaudszus A et al. Probiotic-induced suppression of allergic sensitization and airway inflammation is associated with an increase of T regulatory-dependent mechanisms in a murine model of asthma. Clin Exp Allergy 2007; 37: 498–505.

    Article  CAS  PubMed  Google Scholar 

  46. Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 2007; 204: 1775–1785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Corthesy B, Gaskins HR, Mercenier A . Cross-talk between probiotic bacteria and the host immune system. J Nutr 2007; 137: 781S–790S.

    Article  CAS  PubMed  Google Scholar 

  48. Cebra JJ . Influences of microbiota on intestinal immune system development. Am J Clin Nutr 1999; 69: 1046S–1051S.

    Article  CAS  PubMed  Google Scholar 

  49. Ukena SN, Singh A, Dringenberg U, Engelhardt R, Seidler U, Hansen W et al. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One 2007; 2: e1308.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jarvinen KM, Konstantinou GN, Pilapil M, Arrieta MC, Noone S, Sampson HA et al. Intestinal permeability in children with food allergy on specific elimination diets. Pediatr Allergy Immunol 2013; 24: 589–595.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Walker J, Dieleman L, Mah D, Park K, Meddings J, Vethanayagam D . High prevalence of abnormal gastrointestinal permeability in moderate-severe asthma. Clin Invest Med 2014; 37: E53–E57.

    Article  PubMed  Google Scholar 

  52. Jeon MK, Klaus C, Kaemmerer E, Gassler N . Intestinal barrier: molecular pathways and modifiers. World J Gastrointest Pathophysiol 2013; 4: 94–99.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Howe KL, Reardon C, Wang A, Nazli A, McKay DM . Transforming growth factor-beta regulation of epithelial tight junction proteins enhances barrier function and blocks enterohemorrhagic Escherichia coli O157:H7-induced increased permeability. Am J Pathol 2005; 167: 1587–1597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci USA 2012; 109: 2108–2113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Taverniti V, Guglielmetti S . The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr 2011; 6: 261–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gorska S, Schwarzer M, Jachymek W, Srutkova D, Brzozowska E, Kozakova H et al. Distinct immunomodulation of bone marrow-derived dendritic cell responses to Lactobacillus plantarum WCFS1 by two different polysaccharides isolated from Lactobacillus rhamnosus LOCK 0900. Appl Environ Microbiol 2014; 80: 6506–6516.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The excellent technical assistance of J Jarkovska, A Smolova, I Grimova and D Drasnarova is gratefully acknowledged. This research was supported by grant NR12-0101-10/2011 of the Republic of Poland, grants P304/11/1252 and 303/09/0449 of the Czech Science Foundation, grants CZ.3.22/2.1.00/09.01574 and CZ.3.22/2.1.00/13.03892, grant SFB F46 from the Austrian Science Fund. and Institutional Research Concept RVO 61388971.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schwarzer.

Ethics declarations

Competing interests

There is no conflict of interest to disclose for all authors.

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology's website (http://www.nature.com/cmi).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozakova, H., Schwarzer, M., Tuckova, L. et al. Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cell Mol Immunol 13, 251–262 (2016). https://doi.org/10.1038/cmi.2015.09

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.09

Keywords

This article is cited by

Search

Quick links