Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Heterozygous mis-sense mutations in Prkcb as a critical determinant of anti-polysaccharide antibody formation

Abstract

To identify rate-limiting steps in T cell-independent type 2 antibody production against polysaccharide antigens, we performed a genome-wide screen by immunizing several hundred pedigrees of C57BL/6 mice segregating N-ethyl-N-nitrosurea-induced mis-sense mutations. Two independent mutations, Tilcara and Untied, were isolated that semi-dominantly diminished antibody against polysaccharide but not protein antigens. Both mutations resulted from single-amino-acid substitutions within the kinase domain of protein kinase C-β (PKCβ). In Tilcara, a Ser552>Pro mutation occurred in helix G, in close proximity to a docking site for the inhibitory N-terminal pseudosubstrate domain of the enzyme, resulting in almost complete loss of active, autophosphorylated PKCβI, whereas the amount of alternatively spliced PKCβII protein was not markedly reduced. Circulating B cell subsets were normal and acute responses to B-cell receptor stimulation such as CD25 induction and initiation of DNA synthesis were only measurably diminished in Tilcara homozygotes, whereas the fraction of cells that had divided multiple times was decreased to an intermediate degree in heterozygotes. These results, coupled with evidence of numerous mis-sense PRKCB mutations in the human genome, identify Prkcb as a genetically sensitive step likely to contribute substantially to population variability in anti-polysaccharide antibody levels.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Scher I . The CBA/N mouse strain: an experimental model illustrating the influence of the X-chromosome on immunity. Adv Immunol 1982; 33: 1–71.

    Article  CAS  Google Scholar 

  2. Moresco EM, LaVine D, Beutler B . Toll-like receptors. Curr Biol 2011; 21: R488–R493.

    Article  CAS  Google Scholar 

  3. Brunswick M, Finkelman FD, Highet PF, Inman JK, Dintzis HM, Mond JJ . Picogram quantities of anti-Ig antibodies coupled to dextran induce B cell proliferation. J Immunol 1988; 140: 3364–3372.

    CAS  PubMed  Google Scholar 

  4. Dintzis RZ, Middleton MH, Dintzis HM . Studies on the immunogenicity and tolerogenicity of T-independent antigens. J Immunol 1983; 131: 2196–2203.

    CAS  PubMed  Google Scholar 

  5. Pillai S, Cariappa A, Moran ST . Marginal zone B cells. Annu Rev Immunol 2005; 23: 161–196.

    Article  CAS  Google Scholar 

  6. Alugupalli KR, Leong JM, Woodland RT, Muramatsu M, Honjo T, Gerstein RM . B1b lymphocytes confer T cell-independent long-lasting immunity. Immunity 2004; 21: 379–390.

    Article  CAS  Google Scholar 

  7. Haas KM, Poe JC, Steeber DA, Tedder TF . B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity 2005; 23: 7–18.

    Article  CAS  Google Scholar 

  8. Mond JJ, Vos Q, Lees A, Snapper CM . T cell independent antigens. Curr Opin Immunol 1995; 7: 349–354.

    Article  CAS  Google Scholar 

  9. Carr TF, Koterba AP, Chandra R, Grammer LC, Conley DB, Harris KE et al. Characterization of specific antibody deficiency in adults with medically refractory chronic rhinosinusitis. Am J Rhinol Allergy 2011; 25: 241–244.

    Article  PubMed Central  Google Scholar 

  10. Faden H . The microbiologic and immunologic basis for recurrent otitis media in children. Eur J Pediatr 2001; 160: 407–413.

    Article  CAS  Google Scholar 

  11. Kaur R, Casey JR, Pichichero ME . Serum antibody response to three non-typeable Haemophilus influenzae outer membrane proteins during acute otitis media and nasopharyngeal colonization in otitis prone and non-otitis prone children. Vaccine 2011; 29: 1023–1028.

    Article  CAS  Google Scholar 

  12. Coventry A, Bull-Otterson LM, Liu X, Clark AG, Maxwell TJ, Crosby J et al. Deep resequencing reveals excess rare recent variants consistent with explosive population growth. Nat Commun 2010; 1: 131.

    Article  PubMed Central  Google Scholar 

  13. Gravel S, Henn BM, Gutenkunst RN, Indap AR, Marth GT, Clark AG et al. Demographic history and rare allele sharing among human populations. ProcNatl Acad Sci USA 2011; 108: 11983–11988.

    Article  CAS  Google Scholar 

  14. Keinan A, Clark AG . Recent explosive human population growth has resulted in an excess of rare genetic variants. Science (New York, NY) 2012; 336: 740–743.

    Article  CAS  Google Scholar 

  15. Nelson MR, Wegmann D, Ehm MG, Kessner D, St Jean P, Verzilli C et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 2012; 337: 100–104.

    Article  CAS  PubMed Central  Google Scholar 

  16. Tennessen JA, Bigham AW, O'Connor TD, Fu W, Kenny EE, Gravel S et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 2012; 337: 64–69.

    Article  CAS  PubMed Central  Google Scholar 

  17. MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 2012; 335: 823–828.

    Article  CAS  PubMed Central  Google Scholar 

  18. Vinuesa CG, Goodnow CC . Illuminating autoimmune regulators through controlled variation of the mouse genome sequence. Immunity 2004; 20: 669–679.

    Article  CAS  Google Scholar 

  19. Nelms KA, Goodnow CC, Genome-wide ENU . mutagenesis to reveal immune regulators. Immunity 2001; 15: 409–418.

    Article  CAS  Google Scholar 

  20. Leitges M, Schmedt C, Guinamard R, Davoust J, Schaal S, Stabel S et al. Immunodeficiency in protein kinase cbeta-deficient mice. Science 1996; 273: 788–791.

    Article  CAS  Google Scholar 

  21. Newton AC . Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem Rev 2001; 101: 2353–2364.

    Article  CAS  Google Scholar 

  22. Dutil EM, Toker A, Newton AC . Regulation of conventional protein kinase C isozymes by phosphoinositide-dependent kinase 1 (PDK-1). Curr Biol 1998; 8: 1366–1375.

    Article  CAS  Google Scholar 

  23. Behn-Krappa A, Newton AC . The hydrophobic phosphorylation motif of conventional protein kinase C is regulated by autophosphorylation. Curr Biol 1999; 9: 728–737.

    Article  CAS  Google Scholar 

  24. Toellner KM, Luther SA, Sze DM, Choy RK, Taylor DR, MacLennan IC et al. T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching. J Exp Med 1998; 187: 1193–1204.

    Article  CAS  PubMed Central  Google Scholar 

  25. Khan WN, Alt FW, Gerstein RM, Malynn BA, Larsson I, Rathbun G et al. Defective B cell development and function in Btk-deficient mice. Immunity 1995; 3: 283–299.

    Article  CAS  Google Scholar 

  26. Wang D, Feng J, Wen R, Marine JC, Sangster MY, Parganas E et al. Phospholipase Cgamma2 is essential in the functions of B cell and several Fc receptors. Immunity 2000; 13: 25–35.

    Article  Google Scholar 

  27. Jun JE, Wilson LE, Vinuesa CG, Lesage S, Blery M, Miosge LA et al. Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis. Immunity 2003; 18: 751–762.

    Article  CAS  Google Scholar 

  28. Shinohara H, Maeda S, Watarai H, Kurosaki T . IkappaB kinase beta-induced phosphorylation of CARMA1 contributes to CARMA1 Bcl10 MALT1 complex formation in B cells. J Exp Med 2007; 204: 3285–3293.

    Article  CAS  PubMed Central  Google Scholar 

  29. Sommer K, Guo B, Pomerantz JL, Bandaranayake AD, Moreno-Garcia ME, Ovechkina YL et al. Phosphorylation of the CARMA1 linker controls NF-kappaB activation. Immunity 2005; 23: 561–574.

    Article  CAS  Google Scholar 

  30. House C, Kemp BE . Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Science (New York, NY) 1987; 238: 1726–1728.

    Article  CAS  Google Scholar 

  31. House C, Robinson PJ, Kemp BE . A synthetic peptide analog of the putative substrate-binding motif activates protein kinase C. FEBS Lett 1989; 249: 243–247.

    Article  CAS  Google Scholar 

  32. Orr JW, Newton AC . Intrapeptide regulation of protein kinase C. J Biolog Chem 1994; 269: 8383–8387.

    CAS  Google Scholar 

  33. Hansra G, Garcia-Paramio P, Prevostel C, Whelan RD, Bornancin F, Parker PJ . Multisite dephosphorylation and desensitization of conventional protein kinase C isotypes. Biochem J 1999; 342 (Pt 2): 337–344.

    Article  CAS  PubMed Central  Google Scholar 

  34. Kawakami Y, Kitaura J, Hartman SE, Lowell CA, Siraganian RP, Kawakami T . Regulation of protein kinase CbetaI by two protein-tyrosine kinases, Btk and Syk. Proc Natl Acad Sci USA 2000; 97: 7423–7428.

    Article  CAS  Google Scholar 

  35. Patke A, Mecklenbrauker I, Erdjument-Bromage H, Tempst P, Tarakhovsky A . BAFF controls B cell metabolic fitness through a PKC beta- and Akt-dependent mechanism. J Exp Med 2006; 203: 2551–2562.

    Article  CAS  PubMed Central  Google Scholar 

  36. Su TT, Guo B, Kawakami Y, Sommer K, Chae K, Humphries LA et al. PKC-beta controls I kappa B kinase lipid raft recruitment and activation in response to BCR signaling. Nat Immunol 2002; 3: 780–786.

    Article  CAS  Google Scholar 

  37. Eris JM, Basten A, Brink R, Doherty K, Kehry MR, Hodgkin PD . Anergic self-reactive B cells present self antigen and respond normally to CD40-dependent T-cell signals but are defective in antigen-receptor-mediated functions. Proc Natl Acad Sci USA 1994; 91: 4392–4396.

    Article  CAS  Google Scholar 

  38. Sampson SR, Cooper DR . Specific protein kinase C isoforms as transducers and modulators of insulin signaling. Mol Genet Metab 2006; 89: 32–47.

    Article  CAS  PubMed Central  Google Scholar 

  39. Arnold CN, Barnes MJ, Berger M, Blasius AL, Brandl K, Croker B et al. ENU-induced phenovariance in mice: inferences from 587 mutations. BMC Res Notes 2012; 5: 577.

    Article  CAS  PubMed Central  Google Scholar 

  40. Cornall RJ, Cyster JG, Hibbs ML, Dunn AR, Otipoby KL, Clark EA et al. Polygenic autoimmune traits: Lyn, CD22, and SHP-1 are limiting elements of a biochemical pathway regulating BCR signaling and selection. Immunity 1998; 8: 497–508.

    Article  CAS  Google Scholar 

  41. Miosge LA, Blasioli J, Blery M, Goodnow CC . Analysis of an ethylnitrosourea-generated mouse mutation defines a cell intrinsic role of nuclear factor kappaB2 in regulating circulating B cell numbers. J Exp Med 2002; 196: 1113–1119.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the staff of the ANU Bioscience Services, the Scripps Research Institute vivarium, the Australian Phenomics Facility, and the JCSMR Flow Cytometry Facility for expert technical services. This work was supported by grants from the Clive and Vera Ramaciotti Foundation, NIH, Wellcome Trust and the NHMRC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C C Goodnow or A Enders.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teh, C., Horikawa, K., Arnold, C. et al. Heterozygous mis-sense mutations in Prkcb as a critical determinant of anti-polysaccharide antibody formation. Genes Immun 14, 223–233 (2013). https://doi.org/10.1038/gene.2013.11

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2013.11

Keywords

Search

Quick links