Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Integration of functional bacterial artificial chromosomes into human cord blood-derived multipotent stem cells

Abstract

Stem cells from a patient with a genetic disease could be used for cell therapy if it were possible to insert a functional copy of the defective gene. In this study, we investigate the transfection and subsequent integration of large genomic fragments into human cord blood-derived multipotent stem cells. We describe for the first time the creation of clonal stem cells carrying a human bacterial artificial chromosome (BAC) containing the Friedreich ataxia locus with an enhanced green fluorescent protein (EGFP) reporter gene fused to exon 5a of the frataxin (FXN) gene. Integration of the BAC into the host cell genome was confirmed by PCR, Southern blot and fluorescent in situ hybridization analysis. Reverse transcription-PCR and flow cytometry confirmed expression of FXN-EGFP. Correct mitochondrial localization of the protein was confirmed using fluorescent microscopy. The transfected stem cells also retained the ability to differentiate into cells from all three germline layers, as demonstrated by the capacity to form neuron-specific β-tubulin-expressing cells, Alizarin Red S-positive bone-like cells, and epithelial-like cells expressing surfactant protein C. This is the first study to demonstrate that cord blood-derived multipotent stem cells may be useful targets for gene therapy applications using large genomic loci.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Erices A, Conget P, Minguell JJ . Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000; 109: 235–242.

    Article  CAS  PubMed  Google Scholar 

  2. Jeong JA, Gang EJ, Hong SH, Hwang SH, Kim SW, Yang IH et al. Rapid neural differentiation of human cord blood-derived mesenchymal stem cells. Neuroreport 2004; 15: 1731–1734.

    Article  CAS  PubMed  Google Scholar 

  3. Kögler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004; 200: 123–135.

    Article  PubMed  PubMed Central  Google Scholar 

  4. McGuckin CP, Forraz N, Baradez MO, Navran S, Zhao J, Urban R et al. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif 2005; 38: 245–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jager M, Degistirici O, Knipper A, Fischer J, Sager M, Krauspe R . Bone healing and migration of cord blood-derived stem cells into a critical size femoral defect after xenotransplantation. J Bone Miner Res 2007; 22: 1224–1233.

    Article  PubMed  Google Scholar 

  6. Chan SL, Choi M, Wnendt S, Kraus M, Teng E, Leong HF et al. Enhanced in vivo homing of uncultured and selectively amplified cord blood CD34+ cells by cotransplantation with cord blood-derived unrestricted somatic stem cells. Stem Cells 2007; 25: 529–536.

    Article  CAS  PubMed  Google Scholar 

  7. Kim BO, Tian H, Prasongsukarn K, Wu J, Angoulvant D, Wnendt S et al. Cell transplantation improves ventricular function after a myocardial infarction: a preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation 2005; 112: I96–104.

    PubMed  Google Scholar 

  8. Bestor TH . Gene silencing as a threat to the success of gene therapy. J Clin Invest 2000; 105: 409–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilson C, Bellen HJ, Gehring WJ . Position effects on eukaryotic gene expression. Annu Rev Cell Biol 1990; 6: 679–714.

    Article  CAS  PubMed  Google Scholar 

  10. Probst FJ, Fridell RA, Raphael Y, Saunders TL, Wang A, Liang Y et al. Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 1998; 280: 1444–1447.

    Article  CAS  PubMed  Google Scholar 

  11. Yang XW, Wynder C, Doughty ML, Heintz N . BAC-mediated gene-dosage analysis reveals a role for Zipro1 (Ru49/Zfp38) in progenitor cell proliferation in cerebellum and skin. Nat Genet 1999; 22: 327–335.

    Article  CAS  PubMed  Google Scholar 

  12. Wade-Martins R, White RE, Kimura H, Cook PR, James MR . Stable correction of a genetic deficiency in human cells by an episome carrying a 115 kb genomic transgene. Nat Biotechnol 2000; 18: 1311–1314.

    Article  CAS  PubMed  Google Scholar 

  13. Bochukova EG, Jefferson A, Francis MJ, Monaco AP . Genomic studies of gene expression: regulation of the Wilson disease gene. Genomics 2003; 81: 531–542.

    Article  CAS  PubMed  Google Scholar 

  14. Sarsero JP, Li L, Holloway TP, Voullaire L, Gazeas S, Fowler KJ et al. Human BAC-mediated rescue of the Friedreich ataxia knockout mutation in transgenic mice. Mamm Genome 2004; 15: 370–382.

    Article  CAS  PubMed  Google Scholar 

  15. Vadolas J, Wardan H, Bosmans M, Zaibak F, Jamsai D, Voullaire L et al. Transgene copy number-dependent rescue of murine beta-globin knockout mice carrying a 183 kb human beta-globin BAC genomic fragment. Biochim Biophys Acta 2005; 1728: 150–162.

    Article  CAS  PubMed  Google Scholar 

  16. Al-Mahdawi S, Pinto RM, Varshney D, Lawrence L, Lowrie MB, Hughes S et al. GAA repeat expansion mutation mouse models of Friedreich ataxia exhibit oxidative stress leading to progressive neuronal and cardiac pathology. Genomics 2006; 88: 580–590.

    Article  CAS  PubMed  Google Scholar 

  17. Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, Melki J et al. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 2001; 27: 181–186.

    Article  CAS  PubMed  Google Scholar 

  18. Gomez-Rodriguez J, Washington V, Cheng J, Dutra A, Pak E, Liu P et al. Advantages of q-PCR as a method of screening for gene targeting in mammalian cells using conventional and whole BAC-based constructs. Nucleic Acids Res 2008; 36: e117.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yuan JS, Burris J, Stewart NR, Mentewab A, Stewart Jr CN . Statistical tools for transgene copy number estimation based on real-time PCR. BMC Bioinformatics 2007; 8 (Suppl 7): S6.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kaufman RM, Pham CT, Ley TJ . Transgenic analysis of a 100-kb human beta-globin cluster-containing DNA fragment propagated as a bacterial artificial chromosome. Blood 1999; 94: 3178–3184.

    CAS  PubMed  Google Scholar 

  21. Sarsero JP, Holloway TP, Li L, McLenachan S, Fowler KJ, Bertoncello I et al. Evaluation of an FRDA-EGFP genomic reporter assay in transgenic mice. Mamm Genome 2005; 16: 228–241.

    Article  CAS  PubMed  Google Scholar 

  22. Cavazzana-Calvo M, Fischer A . Gene therapy for severe combined immunodeficiency: are we there yet? J Clin Invest 2007; 117: 1456–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M et al. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 1995; 270: 475–480.

    Article  CAS  PubMed  Google Scholar 

  24. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.

    Article  CAS  PubMed  Google Scholar 

  25. Bank A, Dorazio R, Leboulch P . A phase I/II clinical trial of beta-globin gene therapy for beta-thalassemia. Ann NY Acad Sci 2005; 1054: 308–316.

    Article  CAS  PubMed  Google Scholar 

  26. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410–2413.

    Article  CAS  PubMed  Google Scholar 

  27. Kelly PF, Radtke S, von Kalle C, Balcik B, Bohn K, Mueller R et al. Stem cell collection and gene transfer in Fanconi anemia. Mol Ther 2007; 15: 211–219.

    Article  CAS  PubMed  Google Scholar 

  28. Ott MG, Seger R, Stein S, Siler U, Hoelzer D, Grez M . Advances in the treatment of Chronic Granulomatous Disease by gene therapy. Curr Gene Ther 2007; 7: 155–161.

    Article  CAS  PubMed  Google Scholar 

  29. Tang J, Xie Q, Pan G, Wang J, Wang M . Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg 2006; 30: 353–361.

    Article  PubMed  Google Scholar 

  30. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M . Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002; 62: 3603–3608.

    CAS  PubMed  Google Scholar 

  31. Kanehira M, Xin H, Hoshino K, Maemondo M, Mizuguchi H, Hayakawa T et al. Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther 2007; 14: 894–903.

    Article  CAS  PubMed  Google Scholar 

  32. Xin H, Kanehira M, Mizuguchi H, Hayakawa T, Kikuchi T, Nukiwa T et al. Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem Cells 2007; 25: 1618–1626.

    Article  CAS  PubMed  Google Scholar 

  33. Elzaouk L, Moelling K, Pavlovic J . Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Exp Dermatol 2006; 15: 865–874.

    Article  CAS  PubMed  Google Scholar 

  34. Tomishima MJ, Hadjantonakis AK, Gong S, Studer L . Production of green fluorescent protein transgenic embryonic stem cells using the GENSAT bacterial artificial chromosome library. Stem Cells 2007; 25: 39–45.

    Article  CAS  PubMed  Google Scholar 

  35. Bruce SJ, Rea RW, Steptoe AL, Busslinger M, Bertram JF, Perkins AC . In vitro differentiation of murine embryonic stem cells toward a renal lineage. Differentiation 2007; 75: 337–349.

    Article  CAS  PubMed  Google Scholar 

  36. Al-Hasani K, Vadolas J, Voullaire L, Williamson R, Ioannou PA . Complementation of alpha-thalassaemia in alpha-globin knockout mice with a 191 kb transgene containing the human alpha-globin locus. Transgenic Res 2004; 13: 235–243.

    Article  CAS  PubMed  Google Scholar 

  37. Testa G, Vintersten K, Zhang Y, Benes V, Muyrers JP, Stewart AF . BAC engineering for the generation of ES cell-targeting constructs and mouse transgenes. Methods Mol Biol 2004; 256: 123–139.

    CAS  PubMed  Google Scholar 

  38. Xian HQ, Werth K, Gottlieb DI . Promoter analysis in ES cell-derived neural cells. Biochem Biophys Res Commun 2005; 327: 155–162.

    Article  CAS  PubMed  Google Scholar 

  39. Wallace HA, Marques-Kranc F, Richardson M, Luna-Crespo F, Sharpe JA, Hughes J et al. Manipulating the mouse genome to engineer precise functional syntenic replacements with human sequence. Cell 2007; 128: 197–209.

    Article  CAS  PubMed  Google Scholar 

  40. Salero E, Hatten ME . Differentiation of ES cells into cerebellar neurons. Proc Natl Acad Sci USA 2007; 104: 2997–3002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Poser I, Sarov M, Hutchins JR, Heriche JK, Toyoda Y, Pozniakovsky A et al. BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods 2008; 5: 409–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang Y, Seed B . Site-specific gene targeting in mouse embryonic stem cells with intact bacterial artificial chromosomes. Nat Biotechnol 2003; 21: 447–451.

    Article  CAS  PubMed  Google Scholar 

  43. Sensken S, Waclawczyk S, Knaupp AS, Trapp T, Enczmann J, Wernet P et al. In vitro differentiation of human cord blood-derived unrestricted somatic stem cells towards an endodermal pathway. Cytotherapy 2007; 9: 362–378.

    Article  CAS  PubMed  Google Scholar 

  44. Hong SH, Gang EJ, Jeong JA, Ahn C, Hwang SH, Yang IH et al. In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells. Biochem Biophys Res Commun 2005; 330: 1153–1161.

    Article  CAS  PubMed  Google Scholar 

  45. Berger MJ, Adams SD, Tigges BM, Sprague SL, Wang XJ, Collins DP et al. Differentiation of umbilical cord blood-derived multilineage progenitor cells into respiratory epithelial cells. Cytotherapy 2006; 8: 480–487.

    Article  CAS  PubMed  Google Scholar 

  46. Ali NN, Edgar AJ, Samadikuchaksaraei A, Timson CM, Romanska HM, Polak JM et al. Derivation of type II alveolar epithelial cells from murine embryonic stem cells. Tissue Eng 2002; 8: 541–550.

    Article  CAS  PubMed  Google Scholar 

  47. Rippon HJ, Ali NN, Polak JM, Bishop AE . Initial observations on the effect of medium composition on the differentiation of murine embryonic stem cells to alveolar type II cells. Cloning Stem Cells 2004; 6: 49–56.

    Article  CAS  PubMed  Google Scholar 

  48. Samadikuchaksaraei A, Bishop AE . Derivation and characterization of alveolar epithelial cells from murine embryonic stem cells in vitro. Methods Mol Biol 2006; 330: 233–248.

    CAS  PubMed  Google Scholar 

  49. Chang YJ, Tseng CP, Hsu LF, Hsieh TB, Hwang SM . Characterization of two populations of mesenchymal progenitor cells in umbilical cord blood. Cell Biol Int 2006; 30: 495–499.

    Article  CAS  PubMed  Google Scholar 

  50. Fallahi-Sichani M, Soleimani M, Najafi SM, Kiani J, Arefian E, Atashi A . In vitro differentiation of cord blood unrestricted somatic stem cells expressing dopamine-associated genes into neuron-like cells. Cell Biol Int 2007; 31: 299–303.

    Article  CAS  PubMed  Google Scholar 

  51. Greschat S, Schira J, Kury P, Rosenbaum C, de Souza Silva MA, Kogler G et al. Unrestricted somatic stem cells from human umbilical cord blood can be differentiated into neurons with a dopaminergic phenotype. Stem Cells Dev 2008; 17: 221–232.

    Article  CAS  PubMed  Google Scholar 

  52. Jager M, Wild A, Lensing-Hohn S, Krauspe R . Influence of different culture solutions on osteoblastic differentiation in cord blood and bone marrow derived progenitor cells. Biomed Tech (Berl) 2003; 48: 241–244.

    Article  CAS  Google Scholar 

  53. Ghodsizad A, Niehaus M, Koegler G, Martin U, Wernet P, Bara C et al. Transplanted human cord blood derived unrestricted somatic stem cells improve left-ventricular function and prevent left-ventricular dilation and scar formation after acute myocardial infarction. Heart 2008; 95: 27–35.

    Article  PubMed  Google Scholar 

  54. Rabald S, Marx G, Mix B, Stephani C, Kamprad M, Cross M et al. Cord blood cell therapy alters LV remodeling and cytokine expression but does not improve heart function after myocardial infarction in rats. Cell Physiol Biochem 2008; 21: 395–408.

    Article  CAS  PubMed  Google Scholar 

  55. Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 2006; 24: 1095–1103.

    Article  PubMed  Google Scholar 

  56. Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 2007; 25: 371–379.

    Article  CAS  PubMed  Google Scholar 

  57. Zwaka TP, Thomson JA . Homologous recombination in human embryonic stem cells. Nat Biotechnol 2003; 21: 319–321.

    Article  CAS  PubMed  Google Scholar 

  58. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP . Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 1997; 64: 295–312.

    Article  CAS  PubMed  Google Scholar 

  59. Dottori M, Pera MF . Neural differentiation of human embryonic stem cells. Methods Mol Biol 2008; 438: 19–30.

    Article  CAS  PubMed  Google Scholar 

  60. Berger M, Adams S, Tigges B, Sprague S, Wang XJ, Collins D et al. Differentiation of umbilical cord blood-derived multilineage progenitor cells into respiratory epithelial cells. Cytotherapy 2006; 8: 480–487.

    Article  CAS  PubMed  Google Scholar 

  61. Sarsero JP, Li L, Wardan H, Sitte K, Williamson R, Ioannou PA . Upregulation of expression from the FRDA genomic locus for the therapy of Friedreich ataxia. J Gene Med 2003; 5: 72–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the New Zealand Cystic Fibrosis Association, CureKids New Zealand, the Australian Cystic Fibrosis Research Trust and a dedicated team of supporters who initially raised funding that enabled this research to proceed. We are also indebted to the Thalassaemia Society of Victoria, Radiomarathon, Laiki Bank, The Greek Conference and the Greek and Cypriot communities of Melbourne, Australia for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Zaibak.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaibak, F., Kozlovski, J., Vadolas, J. et al. Integration of functional bacterial artificial chromosomes into human cord blood-derived multipotent stem cells. Gene Ther 16, 404–414 (2009). https://doi.org/10.1038/gt.2008.187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.187

Keywords

This article is cited by

Search

Quick links