Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Modulation of feeding by chronic rAAV expression of a relaxin-3 peptide agonist in rat hypothalamus

Abstract

Relaxin-3 is a neuropeptide that is abundantly expressed by discrete brainstem neuron populations that broadly innervate forebrain areas rich in the relaxin-3 G-protein-coupled-receptor, RXFP3. Acute and subchronic central administration of synthetic relaxin-3 or an RXFP3-selective agonist peptide, R3/I5, increase feeding and body weight in rats. Intrahypothalamic injection of relaxin-3 also increases feeding. In this study, we developed a recombinant adeno-associated virus 1/2 (rAAV1/2) vector that drives expression and constitutive secretion of bioactive R3/I5 and assessed the effect of intrahypothalamic injections on daily food intake and body weight gain in adult male rats over 8 weeks. In vitro testing revealed that the vector rAAV1/2-fibronectin (FIB)-R3/I5 directs the constitutive secretion of bioactive R3/I5 peptide. Bilateral injection of rAAV1/2-FIB-R3/I5 vector into the paraventricular nucleus produced an increase in daily food intake and body weight gain (P<0.01, 23%, respectively), relative to control treatment. In a separate cohort of rats, quantitative polymerase chain reaction analysis of hypothalamic mRNA revealed strong expression of R3/I5 transgene at 3 months post-rAAV1/2-FIB-R3/I5 infusion. Levels of mRNA transcripts for the relaxin-3 receptor RXFP3, the hypothalamic ‘feeding’ peptides neuropeptide Y, AgRP and POMC, and the reproductive hormone, GnRH, were all similar to control, whereas vasopressin and oxytocin (OT) mRNA levels were reduced by 25% (P=0.051) and 50% (P<0.005), respectively, in rAAV1/2-FIB-R3/I5-treated rats (at 12 weeks, n=9/8 rats per group). These data demonstrate for the first time that R3/I5 is effective in modulating feeding in the rat by chronic hypothalamic RXFP3 activation and suggest a potential underlying mechanism involving altered OT signalling. Importantly, there was no desensitization of the feeding response over the treatment period and no apparent deleterious health effects, indicating that targeting the relaxin-3–RXFP3 system may be an effective long-term therapy for eating disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Bathgate RAD, Samuel CS, Burazin TCD, Layfield S, Claasz AA, Reytomas IGT et al. Human relaxin gene 3 (H3) and the equivalent mouse relaxin (M3) gene. Novel members of the relaxin peptide family. J Biol Chem 2002; 277: 1148–1157.

    Article  CAS  Google Scholar 

  2. Burazin TCD, Bathgate RAD, Macris M, Layfield S, Gundlach AL, Tregear G . Restricted, but abundant, expression of the novel rat gene-3 (R3) relaxin in the dorsal tegmental region of brain. J Neurochem 2002; 82: 1553–1557.

    Article  CAS  Google Scholar 

  3. Tanaka M, Iijima N, Miyamoto Y, Fukusumi S, Itoh Y, Ozawa H et al. Neurons expressing relaxin 3/INSL 7 in the nucleus incertus respond to stress. Eur J Neurosci 2005; 21: 1659–1670.

    Article  Google Scholar 

  4. Smith CM, Shen PJ, Banerjee A, Bonaventure P, Ma S, Bathgate RAD et al. Distribution of relaxin-3 and RXFP3 within arousal, stress, affective, and cognitive circuits of mouse brain. J Comp Neurol 2010; 518: 4016–4045.

    Article  CAS  Google Scholar 

  5. Ryan PJ, Ma S, Olucha-Bordonau FE, Gundlach AL . Nucleus incertus—an emerging modulatory role in arousal, stress and memory. Neurosci Biobehav Rev 2011; 35: 1326–1341.

    Article  Google Scholar 

  6. Ma S, Bonaventure P, Ferraro T, Shen PJ, Burazin TCD, Bathgate RAD et al. Relaxin-3 in GABA projection neurons of nucleus incertus suggests widespread influence on forebrain circuits via G-protein-coupled receptor-135 in the rat. Neuroscience 2007; 144: 165–190.

    Article  CAS  Google Scholar 

  7. Goto M, Swanson LW, Canteras NS . Connections of the nucleus incertus. J Comp Neurol 2001; 438: 86–122.

    Article  CAS  Google Scholar 

  8. Olucha-Bordonau FE, Teruel V, Barcia-Gonzalez J, Ruiz-Torner A, Valverde-Navarro AA, Martinez-Soriano F . Cytoarchitecture and efferent projections of the nucleus incertus of the rat. J Comp Neurol 2003; 464: 62–97.

    Article  Google Scholar 

  9. Liu C, Eriste E, Sutton S, Chen J, Roland B, Kuei C et al. Identification of relaxin-3/INSL7 as an endogenous ligand for the orphan G-protein-coupled receptor GPCR135. J Biol Chem 2003; 278: 50754–50764.

    Article  CAS  Google Scholar 

  10. Sutton SW, Bonaventure P, Kuei C, Roland B, Jingcai C, Nepomuceno D et al. Distribution of G-protein-coupled receptor (GPCR)135 binding sites and receptor mRNA in the rat brain suggests a role for relaxin-3 in neuroendocrine and sensory processing. Neuroendocrinology 2004; 80: 298–307.

    Article  CAS  Google Scholar 

  11. Banerjee A, Shen PJ, Ma S, Bathgate RA, Gundlach AL . Swim stress excitation of nucleus incertus and rapid induction of relaxin-3 expression via CRF1 activation. Neuropharmacology 2009; 58: 145–155.

    Article  Google Scholar 

  12. Ma S, Olucha-Bordonau FE, Hossain MA, Lin F, Kuei C, Liu CL et al. Modulation of hippocampal theta oscillations and spatial memory by relaxin-3 neurons of the nucleus incertus. Learn Mem 2009; 16: 730–742.

    Article  CAS  Google Scholar 

  13. McGowan BMC, Stanley SA, Smith KL, White NE, Connolly MM, Thompson EL et al. Central relaxin-3 administration causes hyperphagia in male wistar rats. Endocrinology 2005; 146: 3295–3300.

    Article  CAS  Google Scholar 

  14. Smith CM, Ryan PJ, Hosken IT, Ma S, Gundlach AL . Relaxin-3 systems in the brain—the first 10 years. J Chem Neuroanat 2011; 42: 262–275.

    Article  CAS  Google Scholar 

  15. Liu C, Chen J, Sutton S, Roland B, Kuei C, Farmer N et al. Identification of relaxin-3/INSL7 as a ligand for GPCR142. J Biol Chem 2003; 278: 50765–50770.

    Article  CAS  Google Scholar 

  16. Sudo S, Kumagai J, Nishi S, Layfield S, Ferraro T, Bathgate RAD et al. H3 relaxin is a specific ligand for LGR7 and activates the receptor by interacting with both the ectodomain and the exoloop 2. J Biol Chem 2003; 278: 7855–7862.

    Article  CAS  Google Scholar 

  17. Liu C, Chen J, Kuei C, Sutton S, Nepomuceno D, Bonaventure P et al. Relaxin-3/insulin-like peptide 5 chimeric peptide, a selective ligand for G protein-coupled receptor (GPCR)135 and GPCR142 over leucine-rich repeat-containing G protein-coupled receptor 7. Mol Pharmacol 2005; 67: 231–240.

    Article  CAS  Google Scholar 

  18. Liu C, Kuei C, Sutton S, Chen J, Bonaventure P, Wu J et al. INSL5 is a high affinity specific agonist for GPCR142 (GPR100). J Biol Chem 2005; 280: 292–300.

    Article  CAS  Google Scholar 

  19. McGowan BM, Stanley SA, Donovan J, Thompson EL, Patterson M, Semjonous NM et al. Relaxin-3 stimulates the hypothalamic-pituitary-gonadal axis. Am J Physiol Endocrinol Metab 2008; 295: E278–E286.

    Article  CAS  Google Scholar 

  20. McGowan BM, Stanley SA, Smith KL, Minnion JS, Donovan J, Thompson EL et al. Effects of acute and chronic relaxin-3 on food intake and energy expenditure in rats. Regul Pept 2006; 136: 72–77.

    Article  CAS  Google Scholar 

  21. McGowan BM, Stanley SA, White NE, Spangeus A, Patterson M, Thompson EL et al. Hypothalamic mapping of orexigenic action and Fos-like immunoreactivity following relaxin-3 administration in male Wistar rats. Am J Physiol Endocrinol Metab 2007; 292: E913–E919.

    Article  CAS  Google Scholar 

  22. Kuei C, Sutton S, Bonaventure P, Pudiak C, Shelton J, Zhu J et al. R3(B{Delta}23 27)R/I5 chimeric peptide, a selective antagonist for GPCR135 and GPCR142 over relaxin receptor LGR7: in vitro and in vivo characterization. J Biol Chem 2007; 282: 25425–25435.

    Article  CAS  Google Scholar 

  23. de Backer M, Fitzsimons C, Brans M, Luijendijk M, Garner K, Vreugdenhil E et al. An adeno-associated viral vector transduces the rat hypothalamus and amygdala more efficient than a lentiviral vector. BMC Neurosci 2010; 11: 81.

    Article  Google Scholar 

  24. Tiesjema B, la Fleur SE, Luijendijk MC, Adan RA . Sustained NPY overexpression in the PVN results in obesity via temporarily increasing food intake. Int J Obes 2009; 17: 1448–1450.

    CAS  Google Scholar 

  25. McCown TJ . Adeno-associated virus-mediated expression and constitutive secretion of galanin suppresses limbic seizure activity in vivo. Mol Ther 2006; 14: 63–68.

    Article  CAS  Google Scholar 

  26. Noe F, Pool AH, Nissinen J, Gobbi M, Bland R, Rizzi M et al. Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain 2008; 131: 1506–1515.

    Article  Google Scholar 

  27. Bathgate RAD, Lin F, Hanson NF, Otvos L, Guidolin A, Giannakis C et al. Relaxin-3: Improved synthesis strategy and demonstration of its high-affinity interaction with the relaxin receptor LGR7 both in vitro and in vivo. Biochemistry 2006; 45: 1043–1053.

    Article  CAS  Google Scholar 

  28. Nakayama K . Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J 1997; 327: 625–635.

    Article  CAS  Google Scholar 

  29. Ruoslahti E . Fibronectin and its receptors. Annu Rev Biochem 1988; 57: 375–413.

    Article  CAS  Google Scholar 

  30. Foti S, Haberman RP, Samulski RJ, McCown TJ . Adeno-associated virus-mediated expression and constitutive secretion of NPY or NPY13-36 suppresses seizure activity in vivo. Gene Therapy 2007; 14: 1534–1536.

    Article  CAS  Google Scholar 

  31. Foti SB, Samulski RJ, McCown TJ . Delivering multiple gene products in the brain from a single adeno-associated virus vector. Gene Therapy 2009; 16: 1314–1319.

    Article  CAS  Google Scholar 

  32. Schafer MKH, Day R, Cullinan WE, Chretien M, Seidah NG, Watson SJ . Gene-expression of prohormone and proprotein convertases in the rat CNS—a comparative in situ hybridization analysis. J Neurosci 1993; 13: 1258–1279.

    Article  CAS  Google Scholar 

  33. Regev L, Ezrielev E, Gershon E, Gil S, Chen A . Genetic approach for intracerebroventricular delivery. Proc Natl Acad Sci USA 2010; 107: 4424–4429.

    Article  CAS  Google Scholar 

  34. Hida T, Takahashi E, Shikata K, Hirohashi T, Sawai T, Seiki T et al. Chronic intracerebroventricular administration of relaxin-3 increases body weight in rats. J Recept Signal Transduct 2006; 26: 147–158.

    Article  CAS  Google Scholar 

  35. Bathgate RAD, Lekgabe ED, McGuane JT, Su Y, Pham T, Ferraro T et al. Adenovirus-mediated delivery of relaxin reverses cardiac fibrosis. Mol Cell Endocrinol 2008; 280: 30–38.

    Article  CAS  Google Scholar 

  36. Chen WB, Shields TS, Stork PJS, Cone RD . A colorimetric assay for measuring activation of G(S)-coupled and G(Q)-coupled signaling pathways. Anal Biochem 1995; 226: 349–354.

    Article  CAS  Google Scholar 

  37. Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Therapy 1999; 6: 973–985.

    Article  CAS  Google Scholar 

  38. Veldwijk MR, Topaly J, Laufs S, Hengge UR, Wenz F, Zeller WJ et al. Development and optimization of a real-time quantitative PCR-based method for the titration of AAV-2 vector stocks. Mol Ther 2002; 6: 272–278.

    Article  CAS  Google Scholar 

  39. de Backer MWA, Brans MAD, Luijendijk MC, Garner KM, Adan RAH . Optimization of adeno-associated viral vector-mediated gene delivery to the hypothalamus. Hum Gene Ther 2010; 21: 673–682.

    Article  CAS  Google Scholar 

  40. Cowley MA, Smart JL, Rubinstein M, Cordan MG, Diano S, Horvath TL et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001; 411: 480–484.

    Article  CAS  Google Scholar 

  41. Korner J, Savontaus E, Chua SC, Leibel RL, Wardlaw SL . Leptin regulation of AgRP and NPY mRNA in the rat hypothalamus. J Neuroendocrinol 2001; 13: 959–966.

    Article  CAS  Google Scholar 

  42. Olszewski PK, Klockars A, Schiöth HB, Levine AS . Oxytocin as feeding inhibitor: maintaining homeostasis in consummatory behavior. Pharmacol Biochem Behav 2010; 97: 47–54.

    Article  CAS  Google Scholar 

  43. Schrier RW, Berl T, Anderson RJ . Osmotic and non-osmotic control of vasopressin release. Am J Physiol 1979; 236: F321–F332.

    CAS  PubMed  Google Scholar 

  44. Wilkinson TN, Bathgate RAD . The Evolution of the Relaxin Peptide Family and their Receptors: Relaxin and Related Peptides. Springer-Verlag: Berlin, 2007, pp 1–13.

    Book  Google Scholar 

  45. Chen J, Kuei C, Sutton SW, Bonaventure P, Nepomuceno D, Eriste E et al. Pharmacological characterization of relaxin-3/INSL7 receptors GPCR135 and GPCR142 from different mammalian species. J Pharmacol Exp Ther 2005; 312: 83–95.

    Article  CAS  Google Scholar 

  46. Hossain MA, Bathgate RAD, Rosengren KJ, Shabanpoor F, Zhang SD, Lin F et al. The structural and functional role of the B-chain C-terminal arginine in the relaxin-3 peptide antagonist, R3(B Delta 23-27)R/I5. Chem Biol Drug Des 2009; 73: 46–52.

    Article  CAS  Google Scholar 

  47. Fitzsimons HL, Bland RJ, During MJ . Promoters and regulatory elements that improve adeno-associated virus transgene expression in the brain. Methods 2002; 28: 227–236.

    Article  CAS  Google Scholar 

  48. Gray SJ, Foti SB, Schwartz JW, Bachaboina L, Taylor-Blake B, Coleman J et al. Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther 2011; 22: 1143–1153.

    Article  CAS  Google Scholar 

  49. Haugaard-Kedstrom LM, Shabanpoor F, Hossain MA, Clark RJ, Ryan PJ, Craik DJ et al. Design, synthesis, and characterization of a single-chain peptide antagonist for the relaxin-3 receptor RXFP3. J Am Chem Soc 2011; 133: 4965–4974.

    Article  CAS  Google Scholar 

  50. Tiesjema B, la Fleur SE, Luijendijk MC, Brans MA, Lin EJ, During MJ et al. Viral mediated neuropeptide Y expression in the rat paraventricular nucleus results in obesity. Int J Obes 2007; 15: 2424–2435.

    CAS  Google Scholar 

  51. Tiesjema B, Adan RA, Luijendijk MC, Kalsbeek A, la Fleur SE . Differential effects of recombinant adeno-associated virus-mediated neuropeptide Y overexpression in the hypothalamic paraventricular nucleus and lateral hypothalamus on feeding behavior. J Neurosci 2007; 27: 14139–14146.

    Article  CAS  Google Scholar 

  52. de Backer MWA, la Fleur SE, Brans MAD, van Rozen AJ, Luijendijk MCM, Merkestein M et al. Melanocortin receptor-mediated effects on obesity are distributed over specific hypothalamic regions. Int J Obes 2011; 35: 629–641.

    Article  CAS  Google Scholar 

  53. Small CJ, Liu YL, Stanley SA, Connoley IP, Kennedy A, Stock MJ et al. Chronic CNS administration of Agouti-related protein (AgRP) reduces energy expenditure. Int J Obes Relat Metab Disord 2003; 27: 530–533.

    Article  CAS  Google Scholar 

  54. Billington CJ, Briggs JE, Grace M, Levine AS . Effects of intracerebroventricular injection of neuropeptide-Y on energy-metabolism. Am J Physiol 1991; 260: R321–R327.

    CAS  PubMed  Google Scholar 

  55. Stanley BG, Daniel DR, Chin AS, Leibowitz SF . Paraventricular nucleus injections of peptide-YY and neuropeptide-Y preferentially enhance carbohydrate ingestion. Peptides 1985; 6: 1205–1211.

    Article  CAS  Google Scholar 

  56. Klein RL, Hamby ME, Gong Y, Hirko AC, Wang S, Hughes JA et al. Dose and promoter effects of adeno-associated viral vector for green fluorescent protein expression in the rat brain. Exp Neurol 2002; 176: 66–74.

    Article  CAS  Google Scholar 

  57. Yulyaningsih E, Zhang L, Herzog H, Sainsbury A . NPY receptors as potential targets for anti-obesity drug development. Br J Pharmacol 2011; 163: 1170–1202.

    Article  CAS  Google Scholar 

  58. Kamiji MM, Inui A . NPY Y(2) and Y(4) receptors selective ligands: promising anti-obesity drugs? Curr Top Med Chem 2007; 7: 1734–1742.

    Article  CAS  Google Scholar 

  59. Wu G, Feder A, Wegener G, Bailey C, Saxena S, Charney D et al. Central functions of neuropeptide Y in mood and anxiety disorders. Expert Opin Ther Targets 2011; 15: 1317–1331.

    Article  CAS  Google Scholar 

  60. Richichi C, Lin E-JD, Stefanin D, Colella D, Ravizza T, Grignaschi G et al. Anticonvulsant and antiepileptogenic effects mediated by adeno-associated virus vector neuropeptide Y expression in the rat hippocampus. J Neurosci 2004; 24: 3051–3059.

    Article  CAS  Google Scholar 

  61. Ganella DE, Ryan PJ, Bathgate RA, Gundlach AL . Increased feeding and body weight gain in rats after acute and chronic activation of RXFP3 by relaxin-3 and receptor-selective peptides: functional and therapeutic implications. Behav Pharmacol 2012; 23: 516–525.

    Article  CAS  Google Scholar 

  62. Olson BR, Drutarosky MD, Chow MS, Hruby VJ, Stricker EM, Verbalis JG . Oxytocin and an oxytocin agonist administered centrally decrease food-intake in rats. Peptides 1991; 12: 113–118.

    Article  CAS  Google Scholar 

  63. Gaetani S, Fu J, Cassano T, Dipasquale P, Romano A, Righetti L et al. The fat-induced satiety factor oleoylethanolamide suppresses feeding through central release of oxytocin. J Neurosci 2010; 30: 8096–8101.

    Article  CAS  Google Scholar 

  64. Olson BR, Drutarosky MD, Stricker EM, Verbalis JG . Brain oxytocin receptor antagonism blunts the effects of anorexigenic treatment in rats—evidence for central oxytocin inhibition of food-intake. Endocrinology 1991; 129: 785–791.

    Article  CAS  Google Scholar 

  65. Callander GE, Thomas WG, Bathgate RAD . Development and optimization of microRNA against relaxin-3. Ann NY Acad Sci 2009; 1160: 261–264.

    Article  CAS  Google Scholar 

  66. Van Der Westhuizen ET, Sexton PM, Bathgate RAD, Summers RJ . Responses of GPCR135 to human gene 3 (H3) relaxin in CHO-KI cells determined by microphysiometry. Ann NY Acad Sci 2005; 1041: 332–337.

    Article  CAS  Google Scholar 

  67. Haugaard-Jonsson LM, Hossain MA, Daly NL, Bathgate RAD, Wade JD, Craik DJ et al. Structure of the R3/I5 chimeric relaxin peptide, a selective GPCR135 and GPCR142 agonist. J Biol Chem 2008; 283: 23811–23818.

    Article  Google Scholar 

  68. Grimm D, Kay MA, Kleinschmidt JA . Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther 2003; 7: 839–850.

    Article  CAS  Google Scholar 

  69. Paxinos G, Watson C . The Rat Brain In Stereotaxic Coordinates. Academic Press: New York, 1986.

    Google Scholar 

  70. Callander GE, Ma S, Ganella DE, Wimmer VC, Gundlach AL, Thomas WG et al. Silencing relaxin-3 in nucleus incertus of adult rodents: a viral vector-based approach to investigate neuropeptide function. PLoS One 2012; 7: e42300.

    Article  CAS  Google Scholar 

  71. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−ΔΔC) method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  72. Schmittgen TD, Livak KJ . Analyzing real-time PCR data by the comparative C–T method. Nat Protoc 2008; 3: 1101–1108.

    Article  CAS  Google Scholar 

  73. Rozen S, Skaletsky H . Primer3 on the WWW for general users and for biologist programmers. Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press: Totowa, NJ, 2000, pp 365–386.

    Google Scholar 

  74. Lindblom J, Haitina T, Fredriksson R, Schioth HB . Differential regulation of nuclear receptors, neuropeptides and peptide hormones in the hypothalamus and pituitary of food restricted rats. Mol Brain Res 2005; 133: 37–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Melanie White, Tania Ferraro and Professor Michael McKinley for technical assistance, Dr Changlu Liu (Johnson & Johnson Pharmaceutical Research and Development LLC, San Diego, CA, USA) for provision of the pCMVSportR3/I5 construct, Professor Thomas McCown (University of North Carolina, Chapel Hill, NC, USA) for the kind gift of the TR-FIB-GFP construct, Dr Michael Mathai (Victoria University, Melbourne, VIC, Australia) for the use of the Echo-MRI Body Composition Analyser and Prof. Geoffrey Tregear for his continuing support. This research was supported by National Health and Medical Research Council of Australia Project Grants 509246 (ALG) and 1005988 (ALG, RADB), and by the Victorian Government Operational Infrastructure Support Programme. DEG is the recipient of Commonwealth Australian Postgraduate Award and GEC was the recipient of a University of Melbourne Research Scholarship. SM and ALG and RADB are recipients of NHMRC (Australia) Training and Research Fellowships, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A D Bathgate.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganella, D., Callander, G., Ma, S. et al. Modulation of feeding by chronic rAAV expression of a relaxin-3 peptide agonist in rat hypothalamus. Gene Ther 20, 703–716 (2013). https://doi.org/10.1038/gt.2012.83

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.83

Keywords

Search

Quick links