Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Deficiency in the NADPH oxidase 4 predisposes towards diet-induced obesity

Abstract

OBJECTIVE:

NADPH oxidase 4 (NOX4) is a reactive oxygen species (ROS) producing NADPH oxidase that regulates redox homeostasis in diverse insulin-sensitive cell types. In particular, NOX4-derived ROS is a key modulator of adipocyte differentiation and mediates insulin receptor signaling in mature adipocytes in vitro. Our study was aimed at investigating the role of NOX4 in adipose tissue differentiation, whole body metabolic homeostasis and insulin sensitivity in vivo.

DESIGN:

Mice with genetic ablation of NOX4 (NOX4-deficient mice) were subjected to chow or high-fat-containing diet for 12 weeks. Body weight gain, adiposity, insulin sensitivity, and adipose tissue and liver gene and protein expression were analyzed and compared with similarly treated wild-type mice.

RESULTS:

Here, we report that NOX4-deficient mice display latent adipose tissue accumulation and are susceptible to diet-induced obesity and early onset insulin resistance. Obesity results from accelerated adipocyte differentiation and hypertrophy, and an increase in whole body energy efficiency. Insulin resistance is associated with increased adipose tissue hypoxia, inflammation and adipocyte apoptosis. In the liver, more severe diet-induced steatosis was observed due to the lack of proper upregulation of mitochondrial fatty acid β-oxidation.

CONCLUSION:

These findings identify NOX4 as a regulator of metabolic homeostasis. Moreover, they indicate an anti-adipogenic role for NOX4 in vivo and reveal its function as a protector against the development of diet-induced obesity, insulin resistance and hepatosteatosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bedard K, Krause KH . The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87: 245–313.

    Article  CAS  Google Scholar 

  2. Geiszt M, Kopp JB, Varnai P, Leto TL . Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci USA 2000; 97: 8010–8014.

    Article  CAS  Google Scholar 

  3. Shiose A, Kuroda J, Tsuruya K, Hirai M, Hirakata H, Naito S et al. A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem 2001; 276: 1417–1423.

    Article  CAS  Google Scholar 

  4. Serrander L, Cartier L, Bedard K, Banfi B, Lardy B, Plastre O et al. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J 2007; 406: 105–114.

    Article  CAS  Google Scholar 

  5. Meng D, Lv DD, Fang J . Insulin-like growth factor-I induces reactive oxygen species production and cell migration through Nox4 and Rac1 in vascular smooth muscle cells. Cardiovasc Res 2008; 80: 299–308.

    Article  CAS  Google Scholar 

  6. Mahadev K, Motoshima H, Wu X, Ruddy JM, Arnold RS, Cheng G et al. The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol 2004; 24: 1844–1854.

    Article  CAS  Google Scholar 

  7. Loh K, Deng H, Fukushima A, Cai X, Boivin B, Galic S et al. Reactive oxygen species enhance insulin sensitivity. Cell Metab 2009; 10: 260–272.

    Article  CAS  Google Scholar 

  8. Entingh AJ, Taniguchi CM, Kahn CR . Bi-directional regulation of brown fat adipogenesis by the insulin receptor. J Biol Chem 2003; 278: 33377–33383.

    Article  CAS  Google Scholar 

  9. Bluher M, Michael MD, Peroni OD, Ueki K, Carter N, Kahn BB et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell 2002; 3: 25–38.

    Article  CAS  Google Scholar 

  10. Schroder K, Wandzioch K, Helmcke I, Brandes RP . Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arterioscler Thromb Vasc Biol 2009; 29: 239–245.

    Article  Google Scholar 

  11. Mouche S, Mkaddem SB, Wang W, Katic M, Tseng YH, Carnesecchi S et al. Reduced expression of the NADPH oxidase NOX4 is a hallmark of adipocyte differentiation. Biochim Biophys Acta 2007; 1773: 1015–1027.

    Article  CAS  Google Scholar 

  12. Goossens GH . The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav 2008; 94: 206–218.

    Article  CAS  Google Scholar 

  13. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004; 114: 1752–1761.

    Article  CAS  Google Scholar 

  14. Park HS, Jin DK, Shin SM, Jang MK, Longo N, Park JW et al. Impaired generation of reactive oxygen species in leprechaunism through downregulation of Nox4. Diabetes 2005; 54: 3175–3181.

    Article  CAS  Google Scholar 

  15. Carnesecchi S, Deffert C, Donati Y, Basset O, Hinz B, Preynat-Seauve O et al. A key role for NOX4 in epithelial cell death during development of lung fibrosis. Antioxid Redox Signal 15: 607–619.

    Article  CAS  Google Scholar 

  16. Somm E, Henrichot E, Pernin A, Juge-Aubry CE, Muzzin P, Dayer JM et al. Decreased fat mass in interleukin-1 receptor antagonist-deficient mice: impact on adipogenesis, food intake, and energy expenditure. Diabetes 2005; 54: 3503–3509.

    Article  CAS  Google Scholar 

  17. Veyrat-Durebex C, Montet X, Vinciguerra M, Gjinovci A, Meda P, Foti M et al. The Lou/C rat: a model of spontaneous food restriction associated with improved insulin sensitivity and decreased lipid storage in adipose tissue. Am J Physiol Endocrinol Metab 2009; 296: E1120–E1132.

    Article  CAS  Google Scholar 

  18. Baran K, Preston E, Wilks D, Cooney GJ, Kraegen EW, Sainsbury A . Chronic central melanocortin-4 receptor antagonism and central neuropeptide-Y infusion in rats produce increased adiposity by divergent pathways. Diabetes 2002; 51: 152–158.

    Article  CAS  Google Scholar 

  19. Crosson SM, Khan A, Printen J, Pessin JE, Saltiel AR . PTG gene deletion causes impaired glycogen synthesis and developmental insulin resistance. J Clin Invest 2003; 111: 1423–1432.

    Article  CAS  Google Scholar 

  20. Skurk T, Alberti-Huber C, Herder C, Hauner H . Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 2007; 92: 1023–1033.

    Article  CAS  Google Scholar 

  21. Johnson JA, Trasino SE, Ferrante Jr AW, Vasselli JR . Prolonged decrease of adipocyte size after rosiglitazone treatment in high- and low-fat-fed rats. Obesity (Silver Spring) 2007; 15: 2653–2663.

    Article  CAS  Google Scholar 

  22. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 2007; 56: 901–911.

    Article  CAS  Google Scholar 

  23. Ye J, Gao Z, Yin J, He Q . Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 2007; 293: E1118–E1128.

    Article  CAS  Google Scholar 

  24. Wood IS, de Heredia FP, Wang B, Trayhurn P . Cellular hypoxia and adipose tissue dysfunction in obesity. Proc Nutr Soc 2009; 68: 370–377.

    Article  CAS  Google Scholar 

  25. Lee MJ, Wu Y, Fried SK . Adipose tissue remodeling in pathophysiology of obesity. Curr Opin Clin Nutr Metab Care 2010; 13: 371–376.

    Article  Google Scholar 

  26. Alkhouri N, Gornicka A, Berk MP, Thapaliya S, Dixon LJ, Kashyap S et al. Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. J Biol Chem 2010; 285: 3428–3438.

    Article  CAS  Google Scholar 

  27. Anghel SI, Wahli W . Fat poetry: a kingdom for PPAR gamma. Cell Res 2007; 17: 486–511.

    Article  CAS  Google Scholar 

  28. Armoni M, Kritz N, Harel C, Bar-Yoseph F, Chen H, Quon MJ et al. Peroxisome proliferator-activated receptor-gamma represses GLUT4 promoter activity in primary adipocytes, and rosiglitazone alleviates this effect. J Biol Chem 2003; 278: 30614–30623.

    Article  CAS  Google Scholar 

  29. Stephens JM, Pekala PH . Transcriptional repression of the GLUT4 and C/EBP genes in 3T3-L1 adipocytes by tumor necrosis factor-alpha. J Biol Chem 1991; 266: 21839–21845.

    CAS  PubMed  Google Scholar 

  30. Kloting N, Berthold S, Kovacs P, Schon MR, Fasshauer M, Ruschke K et al. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One 2009; 4: e4699.

    Article  Google Scholar 

  31. Takanabe R, Ono K, Abe Y, Takaya T, Horie T, Wada H et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem Biophys Res Commun 2008; 376: 728–732.

    Article  CAS  Google Scholar 

  32. Kim YJ, Hwang SJ, Bae YC, Jung JS . MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 2009; 27: 3093–3102.

    CAS  Google Scholar 

  33. Sharma MR, Polavarapu R, Roseman D, Patel V, Eaton E, Kishor PB et al. Transcriptional networks in a rat model for nonalcoholic fatty liver disease: a microarray analysis. Exp Mol Pathol 2006; 81: 202–210.

    Article  CAS  Google Scholar 

  34. Reddy JK, Rao MS . Lipid metabolism and liver inflammation. I. Hepatic fatty acid uptake: possible role in steatosis. Am J Physiol Gastrointest Liver Physiol 2006; 290: G852–G858.

    Article  CAS  Google Scholar 

  35. Uemura M, Swenson ES, Gaca MD, Giordano FJ, Reiss M, Wells RG . Smad2 and Smad3 play different roles in rat hepatic stellate cell function and alpha-smooth muscle actin organization. Mol Biol Cell 2005; 16: 4214–4224.

    Article  CAS  Google Scholar 

  36. Brenner DA . Molecular pathogenesis of liver fibrosis. Trans Am Clin Climatol Assoc 2009; 120: 361–368.

    PubMed  PubMed Central  Google Scholar 

  37. Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 2009; 58: 250–259.

    Article  CAS  Google Scholar 

  38. Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ et al. FGF-21 as a novel metabolic regulator. J Clin Invest 2005; 115: 1627–1635.

    Article  CAS  Google Scholar 

  39. Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 2007; 148: 774–781.

    Article  CAS  Google Scholar 

  40. Dushay J, Chui PC, Gopalakrishnan GS, Varela-Rey M, Crawley M, Fisher FM et al. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 2010; 139: 456–463.

    Article  CAS  Google Scholar 

  41. Horvath TL, Andrews ZB, Diano S . Fuel utilization by hypothalamic neurons: roles for ROS. Trends Endocrinol Metab 2009; 20: 78–87.

    Article  CAS  Google Scholar 

  42. Schenk S, Saberi M, Olefsky JM . Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 2008; 118: 2992–3002.

    Article  CAS  Google Scholar 

  43. Trayhurn P, Wang B, Wood IS . Hypoxia and the endocrine and signalling role of white adipose tissue. Arch Physiol Biochem 2008; 114: 267–276.

    Article  CAS  Google Scholar 

  44. Lee YH, Nair S, Rousseau E, Allison DB, Page GP, Tataranni PA et al. Microarray profiling of isolated abdominal subcutaneous adipocytes from obese vs non-obese Pima Indians: increased expression of inflammation-related genes. Diabetologia 2005; 48: 1776–1783.

    Article  CAS  Google Scholar 

  45. Bradbury MW . Lipid metabolism and liver inflammation. I. Hepatic fatty acid uptake: possible role in steatosis. Am J Physiol Gastrointest Liver Physiol 2006; 290: G194–G198.

    Article  CAS  Google Scholar 

  46. Hijona E, Hijona L, Arenas JI, Bujanda L . Inflammatory mediators of hepatic steatosis. Mediators Inflamm 2010; 2010: 837419.

    Article  Google Scholar 

  47. Carmona-Cuenca I, Roncero C, Sancho P, Caja L, Fausto N, Fernandez M et al. Upregulation of the NADPH oxidase NOX4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity. J Hepatol 2008; 49: 965–976.

    Article  CAS  Google Scholar 

  48. Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 2009; 15: 1077–1081.

    Article  CAS  Google Scholar 

  49. Ghouri N, Preiss D, Sattar N . Liver enzymes, nonalcoholic fatty liver disease, and incident cardiovascular disease: a narrative review and clinical perspective of prospective data. Hepatology 2010; 52: 1156–1161.

    Article  Google Scholar 

  50. Dunn W, Xu R, Wingard DL, Rogers C, Angulo P, Younossi ZM et al. Suspected nonalcoholic fatty liver disease and mortality risk in a population-based cohort study. Am J Gastroenterol 2008; 103: 2263–2271.

    Article  Google Scholar 

  51. McKimmie RL, Daniel KR, Carr JJ, Bowden DW, Freedman BI, Register TC et al. Hepatic steatosis and subclinical cardiovascular disease in a cohort enriched for type 2 diabetes: the Diabetes Heart Study. Am J Gastroenterol 2008; 103: 3029–3035.

    Article  CAS  Google Scholar 

  52. Rivera J, Sobey CG, Walduck AK, Drummond GR . Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models. Redox Rep 2010; 15: 50–63.

    Article  CAS  Google Scholar 

  53. Nabeebaccus A, Zhang M, Shah AM . NADPH oxidases and cardiac remodelling. Heart Fail Rev 2011; 16: 5–12.

    Article  CAS  Google Scholar 

  54. van Tilburg JH, Sandkuijl LA, Strengman E, Pearson PL, van Haeften TW, Wijmenga C . Variance-component analysis of obesity in type 2 diabetes confirms loci on chromosomes 1q and 11q. Obes Res 2003; 11: 1290–1294.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Swiss National Science Foundation (Grant No. 3100A0-122327) to IS, 3100A0-103725 to KHK and 310030-141162 to PM. We thank F Rohner-Jeanrenaud and C Wollheim (University of Geneva) for helpful discussions and critical reading of the manuscript. We are grateful to C Chapponnier (University of Geneva) for providing the α-SMA antibody. We thank our collaborators at the University of Geneva: Olivier Plastre and Dorothee Rigo for the excellent technical assistance, Sergei Startcsik for the computer-assisted analysis of adipose tissue, Patrick Descombes and Didier Chollet for the miRNA analysis and Annelise Wohlwend for help with histological evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Szanto.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Mouche, S., Sajic, T. et al. Deficiency in the NADPH oxidase 4 predisposes towards diet-induced obesity. Int J Obes 36, 1503–1513 (2012). https://doi.org/10.1038/ijo.2011.279

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2011.279

Keywords

This article is cited by

Search

Quick links