Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

SNP-based mapping arrays reveal high genomic complexity in monoclonal gammopathies, from MGUS to myeloma status

Abstract

Genetic events mediating transformation from premalignant monoclonal gammopathies (MG) to multiple myeloma (MM) are unknown. To obtain a comprehensive genomic profile of MG from the early to late stages, we performed high-resolution analysis of purified plasma cells from 20 MGUS, 20 smoldering MM (SMM) and 34 MM by high-density 6.0 SNP array. A progressive increase in the incidence of copy number abnormalities (CNA) from MGUS to SMM and to MM (median 5, 7.5 and 12 per case, respectively) was observed (P=0.006). Gains on 1q, 3p, 6p, 9p, 11q, 19p, 19q and 21q along with 1p, 16q and 22q deletions were significantly less frequent in MGUS than in MM. Although 11q and 21q gains together with 16q and 22q deletions were apparently exclusive of MM status, we observed that these abnormalities were also present in minor subclones in MGUS. Overall, a total of 65 copy number-neutral LOH (CNN-LOH) were detected. Their frequency was higher in active MM than in the asymptomatic entities (P=0.047). A strong association between genetic lesions and fragile sites was also detected. In summary, our study shows an increasing genomic complexity from MGUS to MM and identifies new chromosomal regions involved in CNA and CNN-LOH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Landgren O, Kyle RA, Pfeiffer RM, Katzmann JA, Caporaso NE, Hayes RB et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood 2009; 113: 5412–5417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weiss BM, Abadie J, Verma P, Howard RS, Kuehl WM . A monoclonal gammopathy precedes multiple myeloma in most patients. Blood 2009; 113: 5418–5422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kyle RA, Greipp PR . Smoldering multiple myeloma. N Engl J Med 1980; 302: 1347–1349.

    Article  CAS  PubMed  Google Scholar 

  4. Perez-Persona E, Vidriales MB, Mateo G, Garcia-Sanz R, Mateos MV, de Coca AG et al. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood 2007; 110: 2586–2592.

    Article  CAS  PubMed  Google Scholar 

  5. Kyle RA, Therneau TM, Rajkumar SV, Offord JR, Larson DR, Plevak MF et al. A Long-Term Study of Prognosis in Monoclonal Gammopathy of Undetermined Significance. N Engl J Med 2002; 346: 564–569.

    Article  PubMed  Google Scholar 

  6. Kyle RA, Remstein ED, Therneau TM, Dispenzieri A, Kurtin PJ, Hodnefield JM et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N Engl J Med 2007; 356: 2582–2590.

    Article  CAS  PubMed  Google Scholar 

  7. Davies FE, Dring AM, Li C, Rawstron AC, Shammas MA, O'Connor SM et al. Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood 2003; 102: 4504–4511.

    Article  CAS  PubMed  Google Scholar 

  8. Hallek M, Bergsagel PL, Anderson KC . Multiple myeloma: increasing evidence for a multistep transformation process. Blood 1998; 91: 3–21.

    CAS  PubMed  Google Scholar 

  9. Avet-Loiseau H, Li JY, Morineau N, Facon T, Brigaudeau C, Harousseau JL et al. Monosomy 13 Is associated with the transition of monoclonal gammopathy of undetermined significance to multiple myeloma. Blood 1999; 94: 2583–2589.

    CAS  PubMed  Google Scholar 

  10. Fonseca R, Bailey RJ, Ahmann GJ, Rajkumar SV, Hoyer JD, Lust A et al. Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 2002; 100: 1417–1424.

    CAS  PubMed  Google Scholar 

  11. Kaufmann H, Ackermann J, Baldia C, Nosslinger T, Wieser R, Seidl S et al. Both IGH translocations and chromosome 13q deletions are early events in monoclonal gammopathy of undetermined significance and do not evolve during transition to multiple myeloma. Leukemia 2004; 18: 1879–1882.

    Article  CAS  PubMed  Google Scholar 

  12. Lopez-Corral L, Gutierrez NC, Vidriales MB, Mateos MV, Rasillo A, Garcia-Sanz R et al. The progression from MGUS to smoldering myeloma and eventually to multiple myeloma involves a clonal expansion of genetically abnormal plasma cells. Clin Cancer Res 2011; 17: 1692–1700.

    Article  CAS  PubMed  Google Scholar 

  13. Walker BA, Leone PE, Chiecchio L, Dickens NJ, Jenner MW, Boyd KD et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood 2010; 116: e56–e65.

    Article  CAS  PubMed  Google Scholar 

  14. Leone PE, Walker BA, Jenner MW, Chiecchio L, Dagrada G, Protheroe RK et al. Deletions of CDKN2C in multiple myeloma: biological and clinical implications. Clin Cancer Res 2008; 14: 6033–6041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC et al. Initial genome sequencing and analysis of multiple myeloma. Nature 2011; 471: 467–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. International Myeloma Working Group Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 121: 749–757 2010.

    Article  Google Scholar 

  17. Zhang J, Feuk L, Duggan GE, Khaja R, Scherer SW . Development of bioinformatics resources for display and analysis of copy number and other structural variants in the human genome. Cytogenet Genome Res 2006; 115: 205–214.

    Article  CAS  PubMed  Google Scholar 

  18. Pfeifer D, Pantic M, Skatulla I, Rawluk J, Kreutz C, Martens UM et al. Genome-wide analysis of DNA copy number changes and LOH in CLL using high-density SNP arrays. Blood 2007; 109: 1202–1210.

    Article  CAS  PubMed  Google Scholar 

  19. Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South ST . American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med 2011; 13: 680–685.

    Article  PubMed  Google Scholar 

  20. Gutierrez NC, Castellanos MV, Martin ML, Mateos MV, Hernandez JM, Fernandez M et al. Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t(4;14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis. Leukemia 2007; 21: 143–150.

    Article  CAS  PubMed  Google Scholar 

  21. Debacker K, Kooy RF . Fragile sites and human disease. Hum Mol Genet 2007; 16: R150–R158.

    Article  CAS  PubMed  Google Scholar 

  22. Dillon LW, Burrow AA, Wang YH . DNA instability at chromosomal fragile sites in cancer. Curr Genomics 2010; 11: 326–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bea S, Ribas M, Hernandez JM, Bosch F, Pinyol M, Hernandez L et al. Increased number of chromosomal imbalances and high-level DNA amplifications in mantle cell lymphoma are associated with blastoid variants. Blood 1999; 93: 4365–4374.

    CAS  PubMed  Google Scholar 

  24. Monni O, Oinonen R, Elonen E, Franssila K, Teerenhovi L, Joensuu H et al. Gain of 3q and deletion of 11q22 are frequent aberrations in mantle cell lymphoma. Genes Chromosomes Cancer 1998; 21: 298–307.

    Article  CAS  PubMed  Google Scholar 

  25. Knuutila S, Autio K, Aalto Y . Online access to CGH data of DNA sequence copy number changes. Am J Pathol 2000; 157: 689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ried T, Heselmeyer-Haddad K, Blegen H, Schrock E, Auer G . Genomic changes defining the genesis, progression, and malignancy potential in solid human tumors: a phenotype/genotype correlation. Genes Chromosomes Cancer 1999; 25: 195–204.

    Article  CAS  PubMed  Google Scholar 

  27. Magrangeas F, vet-Loiseau H, Munshi NC, Minvielle S . Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients. Blood 2011; 118: 675–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng SH, Ng MH, Lau KM, Liu HS, Chan JC, Hui AB et al. 4q loss is potentially an important genetic event in MM tumorigenesis: identification of a tumor suppressor gene regulated by promoter methylation at 4q13.3, platelet factor 4. Blood 2007; 109: 2089–2099.

    Article  CAS  PubMed  Google Scholar 

  29. Rasillo A, Tabernero MD, Sanchez ML, Perez de AM, Martin AM, Hernandez J et al. Fluorescence in situ hybridization analysis of aneuploidization patterns in monoclonal gammopathy of undetermined significance versus multiple myeloma and plasma cell leukemia. Cancer 2003; 97: 601–609.

    Article  PubMed  Google Scholar 

  30. Bozec A, Bakiri L, Hoebertz A, Eferl R, Schilling AF, Komnenovic V et al. Osteoclast size is controlled by Fra-2 through LIF/LIF-receptor signalling and hypoxia. Nature 2008; 454: 221–225.

    Article  CAS  PubMed  Google Scholar 

  31. Geng H, Harvey CT, Pittsenbarger J, Liu Q, Beer TM, Xue C et al. HDAC4 protein regulates HIF1alpha protein lysine acetylation and cancer cell response to hypoxia. J Biol Chem 2011; 286: 38095–38102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mathas S, Kreher S, Meaburn KJ, Johrens K, Lamprecht B, Assaf C et al. Gene deregulation and spatial genome reorganization near breakpoints prior to formation of translocations in anaplastic large cell lymphoma. Proc Natl Acad Sci USA 2009; 106: 5831–5836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weitzman JB, Fiette L, Matsuo K, Yaniv M . JunD protects cells from p53-dependent senescence and apoptosis. Mol Cell 2000; 6: 1109–1119.

    Article  CAS  PubMed  Google Scholar 

  34. Schepers H, Wierenga AT, van GD, Eggen BJ, Vellenga E, Schuringa JJ . Reintroduction of C/EBPalpha in leukemic CD34+ stem/progenitor cells impairs self-renewal and partially restores myelopoiesis. Blood 2007; 110: 1317–1325.

    Article  CAS  PubMed  Google Scholar 

  35. Thoennissen NH, Thoennissen GB, Abbassi S, Nabavi-Nouis S, Sauer T, Doan NB et al. Transcription factor CCAAT/enhancer-binding protein alpha and critical circadian clock downstream target gene PER2 are highly deregulated in diffuse large B-cell lymphoma. Leuk Lymphoma 2012; 21 Feb.

  36. Fuchs O, Provaznikova D, Kocova M, Kostecka A, Cvekova P, Neuwirtova R et al. CEBPA polymorphisms and mutations in patients with acute myeloid leukemia, myelodysplastic syndrome, multiple myeloma and non-Hodgkin's lymphoma. Blood Cells Mol Dis 2008; 40: 401–405.

    Article  CAS  PubMed  Google Scholar 

  37. Rossi EA, Rossi DL, Cardillo TM, Stein R, Goldenberg DM, Chang CH . Preclinical studies on targeted delivery of multiple IFNalpha2b to HLA-DR in diverse hematologic cancers. Blood 2011; 118: 1877–1884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheng I, Levin AM, Tai YC, Plummer S, Chen GK, Neslund-Dudas C et al. Copy number alterations in prostate tumors and disease aggressiveness. Genes Chromosomes Cancer 2012; 51: 66–76.

    Article  CAS  PubMed  Google Scholar 

  39. Johnstone RW, Frew AJ, Smyth MJ . The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 2008; 8: 782–798.

    Article  CAS  PubMed  Google Scholar 

  40. Jourdan M, Reme T, Goldschmidt H, Fiol G, Pantesco V, De VJ et al. Gene expression of anti- and pro-apoptotic proteins in malignant and normal plasma cells. Br J Haematol 2009; 145: 45–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ripperger T, von NN, Kamphues K, Emura M, Lehmann U, Tauscher M et al. Promoter methylation of PARG1, a novel candidate tumor suppressor gene in mantle-cell lymphomas. Haematologica 2007; 92: 460–468.

    Article  CAS  PubMed  Google Scholar 

  42. Wu X, Shi J, Wu Y, Tao Y, Hou J, Meng X et al. Arsenic trioxide-mediated growth inhibition of myeloma cells is associated with an extrinsic or intrinsic signaling pathway through activation of TRAIL or TRAIL receptor 2. Cancer Biol Ther 2010; 10: 1201–1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leich E, Salaverria I, Bea S, Zettl A, Wright G, Moreno V et al. Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations. Blood 2009; 114: 826–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hartmann EM, Campo E, Wright G, Lenz G, Salaverria I, Jares P et al. Pathway discovery in mantle cell lymphoma by integrated analysis of high-resolution gene expression and copy number profiling. Blood 2010; 116: 953–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Walker BA, Leone PE, Jenner MW, Li C, Gonzalez D, Johnson DC et al. Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms, and genes important in the pathogenesis of multiple myeloma. Blood 2006; 108: 1733–1743.

    Article  CAS  PubMed  Google Scholar 

  46. Walker BA, Morgan GJ . Use of single nucleotide polymorphism-based mapping arrays to detect copy number changes and loss of heterozygosity in multiple myeloma. Clin Lymphoma Myeloma 2006; 7: 186–191.

    Article  CAS  PubMed  Google Scholar 

  47. Dickens NJ, Walker BA, Leone PE, Johnson DC, Brito JL, Zeisig A et al. Homozygous deletion mapping in myeloma samples identifies genes and an expression signature relevant to pathogenesis and outcome. Clin Cancer Res 2010; 16: 1856–1864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007; 12: 131–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Remy L, Trespeuch C . [Matrilysin-1 and cancer pathology]. Med Sci 2005; 21: 498–502.

    Google Scholar 

  50. Orr BA, Bai H, Odia Y, Jain D, Anders RA, Eberhart CG . Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth. J Neuropathol Exp Neurol 2011; 70: 568–577.

    Article  CAS  PubMed  Google Scholar 

  51. Barrow J, mowicz-Brice M, Cartmill M, MacArthur D, Lowe J, Robson K et al. Homozygous loss of ADAM3A revealed by genome-wide analysis of pediatric high-grade glioma and diffuse intrinsic pontine gliomas. Neuro Oncol 2011; 13: 212–222.

    Article  CAS  PubMed  Google Scholar 

  52. Epping MT, Wang L, Edel MJ, Carlee L, Hernandez M, Bernards R . The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell 2005; 122: 835–847.

    Article  CAS  PubMed  Google Scholar 

  53. Laczmanska I, Sasiadek MM . Tyrosine phosphatases as a superfamily of tumor suppressors in colorectal cancer. Acta Biochim Pol 2011; 58: 467–470.

    Article  CAS  PubMed  Google Scholar 

  54. Nakada S, Tai I, Panier S, Al-Hakim A, Iemura S, Juang YC et al. Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 2010; 466: 941–946.

    Article  CAS  PubMed  Google Scholar 

  55. Glover TW . Common fragile sites. Cancer Lett 2006; 232: 4–12.

    Article  CAS  PubMed  Google Scholar 

  56. O'Keefe LV, Richards RI . Common chromosomal fragile sites and cancer: focus on FRA16D. Cancer Lett 2006; 232: 37–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Spanish FIS (PI080568 and PS0901897), the Spanish Myeloma Network Program (RD06/0020/0006) and the ‘Gerencia Regional de Salud, Junta de Castilla y León’ (GRS 702/A/11) grant. MES is supported by the Ministerio de Sanidad y Consumo (CA08/00212). We thank ‘Grupo Español de Mieloma’ clinicians for providing MM samples and S González, I Rodriguez, I Isidro, T Prieto y V Gutierrez for technical assistance.

AUTHOR CONTRIBUTIONS

LLC and MES participated in the design of the study, carried out all molecular studies, prepared the database for the final analysis and prepared the initial version of the paper. SB participated in the analysis of the study and provided preapproval of the final version of the paper. RG-S, MG and MVM participated in the design of the study and supervised the statistical analysis of the study. LAC and JMS participated in the statistical analysis of the study. EMG provided technical assistance. JB, AO, MH-G, PG and JH are clinicians who contributed to collection samples. JMH-R participated in the design of the study and provided the FISH results. JFSM and NCG were the initial persons promoting the study. They were responsible for the overall group and for the most important revision of the draft, as well as the persons who gave their final approval of the version to be published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N C Gutiérrez.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Corral, L., Sarasquete, M., Beà, S. et al. SNP-based mapping arrays reveal high genomic complexity in monoclonal gammopathies, from MGUS to myeloma status. Leukemia 26, 2521–2529 (2012). https://doi.org/10.1038/leu.2012.128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.128

Keywords

This article is cited by

Search

Quick links