Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differentiation

ATRA and the specific RARα agonist, NRX195183, have opposing effects on the clonogenicity of pre-leukemic murine AML1-ETO bone marrow cells

Abstract

All-trans retinoic acid (ATRA) is used successfully in the treatment of acute promyelocytic leukemia (APL). ATRA enhances hematopoietic stem cell self-renewal through retinoic acid receptor (RAR)γ activation while promoting differentiation of committed myeloid progenitors through RARα activation. Its lack of success in the treatment of non-APL acute myeloid leukemia (AML) may be related to ATRA’s non-selectivity for the RARα and RARγ isotypes, and specific RARα activation may be more beneficial in promoting myeloid differentiation. To investigate this hypothesis, the effects of ATRA and the specific RARα agonist NRX195183 was assessed in AML1-ETO (AE)-expressing murine bone marrow (BM) progenitors. ATRA potentiated the in vitro clonogenicity of these cells while NRX195183 had the opposite effect. Morphological and flow cytometric analysis confirmed a predominantly immature myeloid population in the ATRA-treated AE cells while the NRX195183-treated cells demonstrated an increase in the mature myeloid population. Similarly, NRX195183 treatment promoted myeloid differentiation in an AE9a in vivo murine model. In the ATRA-treated AE cells, gene expression analyses revealed functional networks involving SERPINE1 and bone morphogenetic protein 2; AKT phosphorylation was upregulated. Collectively, these findings confirm the contrasting roles of specific RARα and RARγ activation in the clonogenicity and differentiation of AE cells with potential significant implications in the treatment of non-APL AML using a specific RARα agonist.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988; 72: 567–572.

    CAS  PubMed  Google Scholar 

  2. Collins SJ, Robertson KA, Mueller L . Retinoic acid-induced granulocytic differentiation of HL-60 myeloid leukemia cells is mediated directly through the retinoic acid receptor (RAR-alpha). Mol Cell Biol 1990; 10: 2154–2163.

    Article  CAS  Google Scholar 

  3. Robertson KA, Emami B, Mueller L, Collins SJ . Multiple members of the retinoic acid receptor family are capable of mediating the granulocytic differentiation of HL-60 cells. Mol Cell Biol 1992; 12: 3743–3749.

    Article  CAS  Google Scholar 

  4. Purton LE, Bernstein ID, Collins SJ . All-trans retinoic acid delays the differentiation of primitive hematopoietic precursors (lin-c-kit+Sca-1(+)) while enhancing the terminal maturation of committed granulocyte/monocyte progenitors. Blood 1999; 94: 483–495.

    CAS  PubMed  Google Scholar 

  5. Zhu J, Heyworth CM, Glasow A, Huang QH, Petrie K, Lanotte M et al. Lineage restriction of the RARalpha gene expression in myeloid differentiation. Blood 2001; 98: 2563–2567.

    Article  CAS  Google Scholar 

  6. Purton LE, Dworkin S, Olsen GH, Walkley CR, Fabb SA, Collins SJ et al. RARgamma is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation. J Exp Med 2006; 203: 1283–1293.

    Article  CAS  Google Scholar 

  7. Estey EH, Thall PF, Pierce S, Cortes J, Beran M, Kantarjian H et al. Randomized phase II study of fludarabine+cytosine arabinoside+idarubicin +/− all-trans retinoic acid +/− granulocyte colony-stimulating factor in poor prognosis newly diagnosed acute myeloid leukemia and myelodysplastic syndrome. Blood 1999; 93: 2478–2484.

    CAS  PubMed  Google Scholar 

  8. Burnett AK, Milligan D, Hills RK, Goldstone A, Prentice AG, Wheatley K et al. Does all-transretinoic acid (ATRA) have a role in non-APL acute myeloid leukaemia?: Results from 1666 patients in three MRC trials. Blood 2004; 104: 1794.

    Google Scholar 

  9. Burnett AK, Hills RK, Green C, Jenkinson S, Koo K, Patel Y et al. The impact on outcome of the addition of all-trans retinoic acid to intensive chemotherapy in younger patients with nonacute promyelocytic acute myeloid leukemia: overall results and results in genotypic subgroups defined by mutations in NPM1, FLT3, and CEBPA. Blood 2010; 115: 948–956.

    Article  CAS  Google Scholar 

  10. Glasow A, Barrett A, Petrie K, Gupta R, Boix-Chornet M, Zhou DC et al. DNA methylation-independent loss of RARA gene expression in acute myeloid leukemia. Blood 2008; 111: 2374–2377.

    Article  CAS  Google Scholar 

  11. Barrett AN, Gupta R, Glasow A, Grimwade D, von Lindern M, Waxman S et al. Deregulation of RAR{gamma} and RAR{gamma}-specific miRNAs in AML. Blood 2007; 110: 3182.

    Article  Google Scholar 

  12. Higuchi M, O'Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR . Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002; 1: 63–74.

    Article  CAS  Google Scholar 

  13. Yergeau DA, Hetherington CJ, Wang Q, Zhang P, Sharpe AH, Binder M et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet 1997; 15: 303–306.

    Article  CAS  Google Scholar 

  14. Okuda T, Cai Z, Yang S, Lenny N, Lyu CJ, van Deursen JM et al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 1998; 91: 3134–3143.

    CAS  PubMed  Google Scholar 

  15. Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 2001; 98: 10398–10403.

    Article  CAS  Google Scholar 

  16. Gilliland DG . Molecular genetics of human leukemias: new insights into therapy. Semin Hematol 2002; 39 (4 Suppl 3): 6–11.

    Article  CAS  Google Scholar 

  17. Herbert KE, Walkley CR, Winkler IG, Hendy J, Olsen GH, Yuan YD et al. Granulocyte colony-stimulating factor and an RARalpha specific agonist, VTP195183, synergize to enhance the mobilization of hematopoietic progenitor cells. Transplantation 2007; 83: 375–384.

    Article  CAS  Google Scholar 

  18. Yan M, Burel SA, Peterson LF, Kanbe E, Iwasaki H, Boyapati A et al. Deletion of an AML1-ETO C-terminal NcoR/SMRT-interacting region strongly induces leukemia development. Proc Natl Acad Sci USA 2004; 101: 17186–17191.

    Article  CAS  Google Scholar 

  19. Wall M, Poortinga G, Hannan KM, Pearson RB, Hannan RD, McArthur GA . Translational control of c-MYC by rapamycin promotes terminal myeloid differentiation. Blood 2008; 112: 2305–2317.

    Article  CAS  Google Scholar 

  20. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5: R80.

    Article  Google Scholar 

  21. Team RDC. R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria, 2009.

  22. Bolstad BM . Low Level Analysis of High-density Oligonucleotide Array Data: Background. Normalization and Summarization. University of California: Berkeley, 2004.

    Google Scholar 

  23. Bolstad BM, Collin F, Brettschneider J, Simpson K, Cope L, Irizarry RA et al. Quality Assessment of Affymetrix GeneChip Data. In: Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S, (eds). Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer: New York, 2005.

    Google Scholar 

  24. Brettschneider J, Collin F, Bolstad BM, Speed TP . Quality assessment for short oligonucleotide microarray data. Technometrics 2008; 50: 241–264.

    Article  Google Scholar 

  25. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP . Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003; 31: e15.

    Article  Google Scholar 

  26. Gautier L, Cope L, Bolstad BM, Irizarry RA . affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004; 20: 307–315.

    Article  CAS  Google Scholar 

  27. Smyth GK . Limma: Linear Models for Microarray Data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W, (eds). Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer: New York, 2005; pp 397–420.

    Chapter  Google Scholar 

  28. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. JR Stat Soc Ser B 1995; 57: 289–300.

    Google Scholar 

  29. Edgar R, Domrachev M, Lash AE . Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30: 207–210.

    Article  CAS  Google Scholar 

  30. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003; 34: 267–273.

    Article  CAS  Google Scholar 

  31. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  Google Scholar 

  32. Beard RL, Duong TT, Teng M, Klein ES, Standevan AM, Chandraratna RA . Synthesis and biological activity of retinoic acid receptor-alpha specific amides. Bioorg Med Chem Lett 2002; 12: 3145–3148.

    Article  CAS  Google Scholar 

  33. Walkley C . Molecular regulation of retinoic acid receptor induced cell cycle arrest during haemopoietic differentiation. PhD thesis, University of Melbourne: Melbourne, Australia, 2003.

    Google Scholar 

  34. Purton LE, Bernstein ID, Collins SJ . All-trans retinoic acid enhances the long-term repopulating activity of cultured hematopoietic stem cells. Blood 2000; 95: 470–477.

    CAS  PubMed  Google Scholar 

  35. Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 2000; 6: 1278–1281.

    Article  CAS  Google Scholar 

  36. Antonchuk J, Sauvageau G, Humphries RK . HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 2002; 109: 39–45.

    Article  CAS  Google Scholar 

  37. Farboud B, Hauksdottir H, Wu Y, Privalsky ML . Isotype-restricted corepressor recruitment: a constitutively closed helix 12 conformation in retinoic acid receptors beta and gamma interferes with corepressor recruitment and prevents transcriptional repression. Mol Cell Biol 2003; 23: 2844–2858.

    Article  CAS  Google Scholar 

  38. Hauksdottir H, Farboud B, Privalsky ML . Retinoic acid receptors beta and gamma do not repress, but instead activate target gene transcription in both the absence and presence of hormone ligand. Mol Endocrinol 2003; 17: 373–385.

    Article  CAS  Google Scholar 

  39. Ma XM, Blenis J . Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009; 10: 307–318.

    Article  Google Scholar 

  40. Matkovic K, Brugnoli F, Bertagnolo V, Banfic H, Visnjic D . The role of the nuclear Akt activation and Akt inhibitors in all-trans-retinoic acid-differentiated HL-60 cells. Leukemia 2006; 20: 941–951.

    Article  CAS  Google Scholar 

  41. Watanabe A, Kurabayashi M, Arai M, Sekiguchi K, Nagai R . Combined effect of retinoic acid and basic FGF on PAI-1 gene expression in vascular smooth muscle cells. Cardiovasc Res 2001; 51: 151–159.

    Article  CAS  Google Scholar 

  42. Watanabe A, Kanai H, Arai M, Sekiguchi K, Uchiyama T, Nagai R et al. Retinoids induce the PAI-1 gene expression through tyrosine kinase-dependent pathways in vascular smooth muscle cells. J Cardiovasc Pharmacol 2002; 39: 503–512.

    Article  CAS  Google Scholar 

  43. Duffy MJ . The urokinase plasminogen activator system: role in malignancy. Curr Pharm Des 2004; 10: 39–49.

    Article  CAS  Google Scholar 

  44. Duffy MJ, McGowan PM, Gallagher WM . Cancer invasion and metastasis: changing views. J Pathol 2008; 214: 283–293.

    Article  CAS  Google Scholar 

  45. Binder BR, Mihaly J . The plasminogen activator inhibitor ‘paradox’ in cancer. Immunol Lett 2008; 118: 116–124.

    Article  CAS  Google Scholar 

  46. Chen Y, Budd RC, Kelm RJ, Sobel BE, Schneider DJ . Augmentation of proliferation of vascular smooth muscle cells by plasminogen activator inhibitor type 1. Arterioscler Thromb Vasc Biol 2006; 26: 1777–1783.

    Article  CAS  Google Scholar 

  47. Webb DJ, Nguyen DH, Sankovic M, Gonias SL . The very low density lipoprotein receptor regulates urokinase receptor catabolism and breast cancer cell motility in vitro. J Biol Chem 1999; 274: 7412–7420.

    Article  CAS  Google Scholar 

  48. Degryse B, Neels JG, Czekay RP, Aertgeerts K, Kamikubo Y, Loskutoff DJ . The low density lipoprotein receptor-related protein is a motogenic receptor for plasminogen activator inhibitor-1. J Biol Chem 2004; 279: 22595–22604.

    Article  CAS  Google Scholar 

  49. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA . JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004; 18: 189–218.

    Article  CAS  Google Scholar 

  50. Chen D, Zhao M, Mundy GR . Bone morphogenetic proteins. Growth Factors 2004; 22: 233–241.

    Article  CAS  Google Scholar 

  51. Boylan JF, Lufkin T, Achkar CC, Taneja R, Chambon P, Gudas LJ . Targeted disruption of retinoic acid receptor alpha (RAR alpha) and RAR gamma results in receptor-specific alterations in retinoic acid-mediated differentiation and retinoic acid metabolism. Mol Cell Biol 1995; 15: 843–851.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Health and Medical Research Council (NHMRC, Canberra, Australia) Project Grant 350272 (GAM and LEP), NHMRC Practitioner Fellowship (GAM) and CSL Limited (Victoria, Australia) (LCYC). LCYC is also a recipient of a University of Melbourne Faculty of Medicine, Dentistry and Health Sciences Research Scholarship and a Royal Australasian College of Physicians Arnott Research Entry Scholarship for Cancer Research. LEP is an NHMRC Senior Research Fellow. GAM was a recipient of a Cancer Council of Victoria Sir Edward Weary Dunlop Clinical Research Fellowship. Many thanks to Prof. James R Downing (St. Jude Children’s Research Hospital, Memphis, TN, USA) for provision of the AML1-ETO-stop/+ mice, Dr David Curtis (Rotary Bone Marrow Research Laboratories, The Royal Melbourne Hospital, Melbourne, Victoria, Australia) for provision of the Mx1-Cre+ mice, Dr David Izon (St. Vincent’s Institute, Fitzroy, Victoria, Australia) for provision of the MigR1 vector, Dr Carleen Cullinane and the Translational Research Laboratory staff for technical assistance with mice procedures, Rebecca Driessen from the Microarray Core for processing of RNA samples, Jason Ellul from the Bioinformatics Department for assistance with analysis, Dr Rosh Chandraratna from IO Therapeutics for helpful discussions and the PMCC Animal Facility staff for care of experimental mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G A McArthur.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

LCYC designed and performed research, collected data, analyzed and interpreted data, performed statistical analysis and wrote the manuscript; JH designed and performed research, and collected data; and LEP and GAM designed the research, interpreted data and wrote the manuscript.

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chee, L., Hendy, J., Purton, L. et al. ATRA and the specific RARα agonist, NRX195183, have opposing effects on the clonogenicity of pre-leukemic murine AML1-ETO bone marrow cells. Leukemia 27, 1369–1380 (2013). https://doi.org/10.1038/leu.2012.362

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.362

Keywords

This article is cited by

Search

Quick links