Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

BET protein inhibition shows efficacy against JAK2V617F-driven neoplasms

Abstract

Small molecule inhibition of the BET family of proteins, which bind acetylated lysines within histones, has been shown to have a marked therapeutic benefit in pre-clinical models of mixed lineage leukemia (MLL) fusion protein-driven leukemias. Here, we report that I-BET151, a highly specific BET family bromodomain inhibitor, leads to growth inhibition in a human erythroleukemic (HEL) cell line as well as in erythroid precursors isolated from polycythemia vera patients. One of the genes most highly downregulated by I-BET151 was LMO2, an important oncogenic regulator of hematopoietic stem cell development and erythropoiesis. We previously reported that LMO2 transcription is dependent upon Janus kinase 2 (JAK2) kinase activity in HEL cells. Here, we show that the transcriptional changes induced by a JAK2 inhibitor (TG101209) and I-BET151 in HEL cells are significantly over-lapping, suggesting a common pathway of action. We generated JAK2 inhibitor resistant HEL cells and showed that these retain sensitivity to I-BET151. These data highlight I-BET151 as a potential alternative treatment against myeloproliferative neoplasms driven by constitutively active JAK2 kinase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Adamson JW, Fialkow PJ, Murphy S, Prchal JF, Steinmann L . Polycythemia vera: stem-cell and probable clonal origin of the disease. N Engl J Med 1976; 295: 913–916.

    Article  CAS  PubMed  Google Scholar 

  2. Fialkow PJ, Faguet GB, Jacobson RJ, Vaidya K, Murphy S . Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell. Blood 1981; 58: 916–919.

    CAS  PubMed  Google Scholar 

  3. Campbell PJ, Baxter EJ, Beer PA, Scott LM, Bench AJ, Huntly BJ et al. Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood 2006; 108: 3548–3555.

    Article  CAS  PubMed  Google Scholar 

  4. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  5. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    Article  CAS  PubMed  Google Scholar 

  6. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005; 280: 22788–22792.

    Article  CAS  PubMed  Google Scholar 

  8. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    Article  CAS  PubMed  Google Scholar 

  9. Mullally A, Lane SW, Ball B, Megerdichian C, Okabe R, Al-Shahrour F et al. Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell 2010; 17: 584–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li J, Spensberger D, Ahn JS, Anand S, Beer PA, Ghevaert C et al. JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia. Blood 2010; 116: 1528–1538.

    Article  CAS  PubMed  Google Scholar 

  11. Dawson MA, Bannister AJ, Gottgens B, Foster SD, Bartke T, Green AR et al. JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 2009; 461: 819–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hernandez-Boluda JC, Alvarez-Larran A, Gomez M, Angona A, Amat P, Bellosillo B et al. Clinical evaluation of the European LeukaemiaNet criteria for clinicohaematological response and resistance/intolerance to hydroxycarbamide in essential thrombocythaemia. Br J Haematol 2011; 152: 81–88.

    Article  PubMed  Google Scholar 

  13. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012; 366: 787–798.

    Article  CAS  PubMed  Google Scholar 

  14. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012; 366: 799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, Thomas DA et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 2010; 363: 1117–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koppikar P, Bhagwat N, Kilpivaara O, Manshouri T, Adli M, Hricik T et al. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature 2012; 489: 155–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barbieri I, Cannizzaro E, Dawson MA . Bromodomains as therapeutic targets in cancer. Brief Funct Genomics 2013; 12: 219–230.

    Article  CAS  PubMed  Google Scholar 

  18. Yang Z, Yik JH, Chen R, He N, Jang MK, Ozato K et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 2005; 19: 535–545.

    Article  CAS  PubMed  Google Scholar 

  19. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 2011; 478: 529–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478: 524–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146: 904–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA 2011; 108: 16669–16674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Godfrey AL, Chen E, Pagano F, Ortmann CA, Silber Y, Bellosillo B et al. JAK2V617F homozygosity arises commonly and recurrently in PV and ET, but PV is characterized by expansion of a dominant homozygous subclone. Blood 2012; 120: 2704–2707.

    Article  CAS  PubMed  Google Scholar 

  24. Hirose K, Inukai T, Kikuchi J, Furukawa Y, Ikawa T, Kawamoto H et al. Aberrant induction of LMO2 by the E2A-HLF chimeric transcription factor and its implication in leukemogenesis of B-precursor ALL with t(17;19). Blood 2010; 116: 962–970.

    Article  CAS  PubMed  Google Scholar 

  25. Calero-Nieto FJ, Joshi A, Bonadies N, Kinston S, Chan WI, Gudgin E et al. HOX-mediated LMO2 expression in embryonic mesoderm is recapitulated in acute leukaemias. Oncogene 2013;; e-pub ahead of print 27 May 2013; doi:10.1038/onc.2013.175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oram SH, Thoms JA, Pridans C, Janes ME, Kinston SJ, Anand S et al. A previously unrecognized promoter of LMO2 forms part of a transcriptional regulatory circuit mediating LMO2 expression in a subset of T-acute lymphoblastic leukaemia patients. Oncogene 2010; 29: 5796–5808.

    Article  CAS  PubMed  Google Scholar 

  27. Ma AC, Ward AC, Liang R, Leung AY . The role of jak2a in zebrafish hematopoiesis. Blood 2007; 110: 1824–1830.

    Article  CAS  PubMed  Google Scholar 

  28. Pardanani A, Gotlib JR, Jamieson C, Cortes JE, Talpaz M, Stone RM et al. Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J Clin Oncol 2011; 29: 789–796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nam CH, Rabbitts TH . The role of LMO2 in development and in T cell leukemia after chromosomal translocation or retroviral insertion. Mol Ther 2006; 13: 15–25.

    Article  CAS  PubMed  Google Scholar 

  30. McCormack MP, Forster A, Drynan L, Pannell R, Rabbitts TH . The LMO2 T-cell oncogene is activated via chromosomal translocations or retroviral insertion during gene therapy but has no mandatory role in normal T-cell development. Mol Cell Biol 2003; 23: 9003–9013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McCormack MP, Young LF, Vasudevan S, de Graaf CA, Codrington R, Rabbitts TH et al. The Lmo2 oncogene initiates leukemia in mice by inducing thymocyte self-renewal. Science 2010; 327: 879–883.

    Article  CAS  PubMed  Google Scholar 

  32. Dawson MA, Curry JE, Barber K, Beer PA, Graham B, Lyons JF et al. AT9283, a potent inhibitor of the Aurora kinases and Jak2, has therapeutic potential in myeloproliferative disorders. Br J Haematol 2010; 150: 46–57.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Kouzarides laboratory for the thoughtful discussion. The Kouzarides laboratory was supported by Cancer Research UK, Leukaemia and Lymphoma Research, GlaxoSmithKline and BBSRC. Work in the Green laboratory is supported by Leukemia and Lymphoma Research, Cancer Research UK, the Kay Kendall Leukaemia Fund, the NIHR Cambridge Biomedical Research Centre, the Cambridge Experimental Cancer Medicine Centre, and the Leukemia and Lymphoma Society of America. The Gottgens laboratory was supported by Cancer Research UK and Leukaemia and Lymphoma Research, UK. The Huntly laboratory was supported by Cancer Research UK and Leukaemia and Lymphoma Research, UK. MA Dawson is a Wellcome Trust Beit Fellow and E Cannizzaro and M Wiese are funded by this Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Kouzarides.

Ethics declarations

Competing interests

T Kouzarides is a founder of Abcam Ltd. RK Prinja and I Rioja are employees and shareholders of GlaxoSmithKline. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyspiańska, B., Bannister, A., Barbieri, I. et al. BET protein inhibition shows efficacy against JAK2V617F-driven neoplasms. Leukemia 28, 88–97 (2014). https://doi.org/10.1038/leu.2013.234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.234

Keywords

This article is cited by

Search

Quick links