Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

Both leukaemic and normal peripheral B lymphoid cells are highly sensitive to the selective pharmacological inhibition of prosurvival Bcl-2 with ABT-199

Abstract

Overexpression of the prosurvival protein Bcl-2 marks many B-lymphoid malignancies and contributes to resistance to many commonly used chemotherapeutic agents. The first effective BH3 mimetic inhibitors of Bcl-2, ABT-737 and navitoclax, also target Bcl-xL, causing dose-limiting thrombocytopenia. This prompted the development of the Bcl-2-selective antagonist, ABT-199. Here we show that in lymphoid cells, ABT-199 specifically causes Bax/Bak-mediated apoptosis that is triggered principally by the initiator BH3-only protein Bim. As expected, malignant cells isolated from patients with chronic lymphocytic leukaemia are highly sensitive to ABT-199. However, we found that normal, untransformed mature B cells are also highly sensitive to ABT-199, both in vitro and in vivo. By contrast, the B-cell precursors are largely spared, as are cells of myeloid origin. These results pinpoint the probable impact of the pharmacological inhibition of Bcl-2 by ABT-199 on the normal mature haemopoietic cell lineages in patients, and have implications for monitoring during ABT-199 therapy as well as for the clinical utility of this very promising targeted agent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Lindsten T, Ross AJ, King A, Zong W, Rathmell JC, Shiels HA et al. The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol Cell 2000; 6: 1389–1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Youle RJ, Strasser A . The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008; 9: 47–59.

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    CAS  PubMed  Google Scholar 

  4. Johnstone RW, Ruefli AA, Lowe SW . Apoptosis: a link between cancer genetics and chemotherapy. Cell 2002; 108: 153–164.

    Article  CAS  PubMed  Google Scholar 

  5. Vousden K, Lane D . p53 in health and disease. Nat Rev Mol Cell Biol 2007; 8: 275–283.

    Article  CAS  PubMed  Google Scholar 

  6. Lessene G, Czabotar PE, Colman PM . BCL-2 family antagonists for cancer therapy. Nat Rev Drug Discov 2008; 7: 989–1000.

    Article  CAS  PubMed  Google Scholar 

  7. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 2008; 68: 3421–3428.

    Article  CAS  PubMed  Google Scholar 

  8. Wilson WH, O'Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol 2010; 11: 1149–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ, Khaw SL et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase i study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol 2012; 30: 488–496.

    Article  CAS  PubMed  Google Scholar 

  10. Gandhi L, Camidge DR, Ribeiro de Oliveira M, Bonomi P, Gandara D, Khaira D et al. Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J Clin Oncol 2011; 29: 909–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S et al. Programmed anuclear cell death delimits platelet life span. Cell 2007; 128: 1173–1186.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang H, Nimmer PM, Tahir SK, Chen J, Fryer RM, Hahn KR et al. Bcl-2 family proteins are essential for platelet survival. Cell Death Differ 2007; 14: 943–951.

    Article  CAS  PubMed  Google Scholar 

  13. Seibler J, Zevnik B, Kuter-Luks B, Andreas S, Kern H, Hennek T et al. Rapid generation of inducible mouse mutants. Nucleic Acids Res 2003; 31: e12.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Merino D, Khaw SL, Glaser SP, Anderson DJ, Belmont LD, Wong C et al. Bcl-2, Bcl-x(L), and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood 2012; 119: 5807–5816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Del Gaizo Moore V, Brown JR, Certo M, Love TM, Novina CD, Letai A . Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J Clin Invest 2007; 117: 112–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rooswinkel RW, van de Kooij B, Verheij M, Borst J . Bcl-2 is a better ABT-737 target than Bcl-xL or Bcl-w and only Noxa overcomes resistance mediated by Mcl-1, Bfl-1, or Bcl-B. Cell Death Dis 2012; 3: e366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 2013; 19: 202–208.

    Article  CAS  PubMed  Google Scholar 

  18. Seymour JF, Davids MS, Anderson MA, Kipps TJ, Wierda WG, Pagel JM et al. The BCL-2-specific BH3-mimetic ABT-199 (GDC-0199) is active and well-tolerated in patients with relapsed/refractory chronic lymphocytic leukemia: interim results of a Phase I First-in-Human Study. ASH Ann Meet Abstracts 2012; 120: 3923.

    Google Scholar 

  19. Davids MS, Roberts AW, Anderson MA, Pagel JM, Kahl BS, Gerecitano JF et al. The BCL-2-specific BH3-mimetic ABT-199 (GDC-0199) is active and well-tolerated in patients with relapsed non-hodgkin lymphoma: interim results of a phase I study. ASH Ann Meet Abstracts 2012; 120: 304.

    Google Scholar 

  20. Roberts A, Davids M, Mahadevan D, Anderson M, Kipps T, Pagel J et al. Selective inhibition of BCL-2 is active against chronic lymphocytic leukemia (CLL): first clinical experience with the BH3-mimetic ABT-199. Haematologica 2012; 97: 257–258.

    Google Scholar 

  21. Motoyama N, Wang FP, Roth KA, Sawa H, Nakayama K, Nakayama K et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x deficient mice. Science 1995; 267: 1506–1510.

    Article  CAS  PubMed  Google Scholar 

  22. Merino R, Ding L, Veis DJ, Korsmeyer SJ, Nuñez G . Developmental regulation of the Bcl-2 protein and susceptibility to cell death in B lymphocytes. EMBO J 1994; 13: 683–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grillot DAM, Merino R, Pena JC, Fanslow WC, Finkelman FD, Thompson CB et al. Bcl-x exhibits regulated expression during B cell development and activation and modulates lymphocyte survival in transgenic mice. J Exp Med 1996; 183: 381–391.

    Article  CAS  PubMed  Google Scholar 

  24. Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ . Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 1993; 75: 229–240.

    Article  CAS  PubMed  Google Scholar 

  25. Veis DJ, Sentman CL, Bach EA, Korsmeyer SJ . Expression of the Bcl-2 protein in murine and human thymocytes and in peripheral T lymphocytes. J Immunol 1993; 151: 2546–2554.

    CAS  PubMed  Google Scholar 

  26. Nakayama K, Nakayama K-I, Negishi I, Kuida K, Sawa H, Loh DY . Targeted disruption of bcl-2ab in mice: occurrence of gray hair, polycystic kidney disease, and lymphocytopenia. Proc Natl Acad Sci USA 1994; 91: 3700–3704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matsuzaki Y, Nakayama K-I, Nakayama K, Tomita T, Isoda M, Loh DY et al. Role of bcl-2 in the development of lymphoid cells from the hematopoietic stem cell. Blood 1997; 89: 853–862.

    CAS  PubMed  Google Scholar 

  28. Gratiot-Deans J, Ding L, Turka LA, Nuñez G . bcl-2 proto-oncogene expression during human T cell development. J Immunol 1993; 151: 83–91.

    CAS  PubMed  Google Scholar 

  29. Gratiot-Deans J, Merino R, Nuñez G, Turka LA . Bcl-2 expression during T-cell development: early loss and late return occur at specific stages of commitment to differentiation and survival. Proc Natl Acad Sci USA 1994; 91: 10685–10689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma A, Pena JC, Chang B, Margosian E, Davidson L, Alt FW et al. Bclx regulates the survival of double-positive thymocytes. Proc Natl Acad Sci USA 1995; 92: 4763–4767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Green DR, Walczak H . Apoptosis therapy: driving cancers down the road to ruin. Nat Med 2013; 19: 131–133.

    Article  CAS  PubMed  Google Scholar 

  32. Davids MS, Letai A . ABT-199: taking dead aim at BCL-2. Cancer Cell 2013; 23: 139–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bouillet P, Metcalf D, Huang DCS, Tarlinton DM, Kay TWH, Köntgen F et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 1999; 286: 1735–1738.

    Article  CAS  PubMed  Google Scholar 

  34. Villunger A, Michalak EM, Coultas L, Müllauer F, Böck G, Ausserlechner MJ et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins Puma and Noxa. Science 2003; 302: 1036–1038.

    Article  CAS  PubMed  Google Scholar 

  35. Knudson CM, Tung KSK, Tourtellotte WG, Brown GAJ, Korsmeyer SJ . Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 1995; 270: 96–99.

    Article  CAS  PubMed  Google Scholar 

  36. Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 1985; 318: 533–538.

    Article  CAS  PubMed  Google Scholar 

  37. Glaser SP, Lee EF, Trounson E, Bouillet P, Wei A, Fairlie WD et al. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev 2012; 26: 120–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mason KD, Khaw SL, Rayeroux KC, Chew E, Lee EF, Fairlie WD et al. The BH3 mimetic compound, ABT-737, synergizes with a range of cytotoxic chemotherapy agents in chronic lymphocytic leukemia. Leukemia 2009; 23: 2034–2041.

    Article  CAS  PubMed  Google Scholar 

  39. O'Reilly LA, Print C, Hausmann G, Moriishi K, Cory S, Huang DCS et al. Tissue expression and subcellular localization of the pro-survival molecule Bcl-w. Cell Death Differ 2001; 8: 486–494.

    Article  CAS  PubMed  Google Scholar 

  40. Certo M, Moore Vdel G, Nishino M, Wei G, Korsmeyer S, Armstrong SA et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 2006; 9: 351–365.

    Article  CAS  PubMed  Google Scholar 

  41. Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI et al. Pro-apoptotic Bak is sequestered by Mc1-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 2005; 19: 1294–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Labi V, Erlacher M, Kiessling S, Manzl C, Frenzel A, O’Reilly L et al. Loss of the BH3-only protein Bmf impairs B cell homeostasis and accelerates gamma irradiation-induced thymic lymphoma development. J Exp Med 2008; 205: 641–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Erlacher M, Laabi V, Manzl C, Bock G, Tzankov A, Haecker G et al. Puma cooperates with Bim, the rate-limiting BH3-only protein in cell death during lymphocyte development, in apoptosis induction. J Exp Med 2006; 203: 2939–2951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alves NL, Derks IA, Berk E, Spijker R, van Lier RA, Eldering E . The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity 2006; 24: 703–716.

    Article  CAS  PubMed  Google Scholar 

  45. Vandenberg CJ, Cory S . ABT-199, a new Bcl-2-specific BH3 mimetic, has in vivo efficacy against aggressive Myc-driven mouse lymphomas without provoking thrombocytopenia. Blood 2013; 121: 2285–2288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hallaert DY, Jaspers A, van Noesel CJ, van Oers MH, Kater AP, Eldering E . c-Abl kinase inhibitors overcome CD40-mediated drug resistance in CLL: implications for therapeutic targeting of chemoresistant niches. Blood 2008; 112: 5141–5149.

    Article  CAS  PubMed  Google Scholar 

  47. Soderquist R, Bates DJ, Danilov AV, Eastman A . Gossypol overcomes stroma-mediated resistance to the BCL2 inhibitor ABT-737 in chronic lymphocytic leukemia cells ex vivo. Leukemia 2013; 27: 2262–2264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Green TM, Young KH, Visco C, Xu-Monette ZY, Orazi A, Go RS et al. Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol 2012; 30: 3460–3467.

    Article  CAS  PubMed  Google Scholar 

  49. Johnson NA, Slack GW, Savage KJ, Connors JM, Ben-Neriah S, Rogic S et al. Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol 2012; 30: 3452–3459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Touzeau C, Dousset C, Le Gouill S, Sampath D, Leverson JD, Souers AJ et al. The Bcl-2 specific BH3 mimetic ABT-199: a promising targeted therapy for t(11;14) multiple myeloma. Leukemia 2014; 28: 210–212.

    Article  CAS  PubMed  Google Scholar 

  51. Lock R, Carol H, Houghton PJ, Morton CL, Kolb EA, Gorlick R et al. Initial testing (stage 1) of the BH3 mimetic ABT-263 by the pediatric preclinical testing program. Pediatr Blood Cancer 2008; 50: 1181–1189.

    Article  PubMed  Google Scholar 

  52. Khaw SL, Huang DC, Roberts AW . Overcoming blocks in apoptosis with BH3-mimetic therapy in haematological malignancies. Pathology 2011; 43: 525–535.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues Andreas Strasser and Jerry Adams for helpful discussions. We thank Abbvie and Genentech for providing ABT-737, navitoclax (ABT-263) and ABT-199; Naomi Sprigg, Lisa Magee, Mary Moody, Lina Laskos and Jenni Harris for assistance with obtaining human samples; Louise Cengia, Angela Georgiou and Mikara Robati for technical assistance; Lorraine O’Reilly for antibodies; Bruno Helbert and Carley Young for mouse genotyping; and Emily Sutherland, Tania Camilleri, Anndrea Pomphrey and Giovanni Siciliano for mouse husbandry. This work was supported by fellowships and grants from the Australian National Health and Medical Research Council (Career Development Award to PB; Practitioner Fellowship to AWR; Research Fellowships to DCSH and PB; Program Grants 461219, 461221, 1051235 and 1016701; Independent Research Institutes Infrastructure Support Scheme grant 361646); the Leukemia and Lymphoma Society (SCOR grants 7417-07 and 7001-13); the Australian Research Council (Discovery Project to DM); the Leukaemia Foundation of Australia (Fellowship to SLK; Grants-in-Aid to SPG, AWR and DCSH); the Cancer Council of Victoria (Fellowship to SLK; Project Grant to AWR and DCSH); Australian Cancer Research Foundation; and a Victorian State Government Operational Infrastructure Support (OIS) Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D C S Huang.

Ethics declarations

Competing interests

SLK, DM, PB, AWR and DCSH are employees of the Walter and Eliza Hall Institute, which receives commercial income and has received research funding from Genentech and Abbott Laboratories (now Abbvie). The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khaw, S., Mérino, D., Anderson, M. et al. Both leukaemic and normal peripheral B lymphoid cells are highly sensitive to the selective pharmacological inhibition of prosurvival Bcl-2 with ABT-199. Leukemia 28, 1207–1215 (2014). https://doi.org/10.1038/leu.2014.1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.1

Keywords

Search

Quick links