Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Multiple Myeloma, Gammopathies

Differentiation stage of myeloma plasma cells: biological and clinical significance

Abstract

The notion that plasma cells (PCs) are terminally differentiated has prevented intensive research in multiple myeloma (MM) about their phenotypic plasticity and differentiation. Here, we demonstrated in healthy individuals (n=20) that the CD19−CD81 expression axis identifies three bone marrow (BM)PC subsets with distinct age-prevalence, proliferation, replication-history, immunoglobulin-production, and phenotype, consistent with progressively increased differentiation from CD19+CD81+ into CD19−CD81+ and CD19−CD81− BMPCs. Afterwards, we demonstrated in 225 newly diagnosed MM patients that, comparing to normal BMPC counterparts, 59% had fully differentiated (CD19−CD81−) clones, 38% intermediate-differentiated (CD19−CD81+) and 3% less-differentiated (CD19+CD81+) clones. The latter patients had dismal outcome, and PC differentiation emerged as an independent prognostic marker for progression-free (HR: 1.7; P=0.005) and overall survival (HR: 2.1; P=0.006). Longitudinal comparison of diagnostic vs minimal-residual-disease samples (n=40) unraveled that in 20% of patients, less-differentiated PCs subclones become enriched after therapy-induced pressure. We also revealed that CD81 expression is epigenetically regulated, that less-differentiated clonal PCs retain high expression of genes related to preceding B-cell stages (for example: PAX5), and show distinct mutation profile vs fully differentiated PC clones within individual patients. Together, we shed new light into PC plasticity and demonstrated that MM patients harbouring less-differentiated PCs have dismal survival, which might be related to higher chemoresistant potential plus different molecular and genomic profiles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Dimopoulos M, Kyle R, Fermand JP, Rajkumar SV, San Miguel J, Chanan-Khan A et al. Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3. Blood 2011; 117: 4701–4705.

    Article  CAS  PubMed  Google Scholar 

  2. Flores-Montero J, de Tute R, Paiva B, Perez JJ, Bottcher S, Wind H et al. Immunophenotype of normal vs. myeloma plasma cells: Toward antibody panel specifications for MRD detection in multiple myeloma. Cytometry B Clin Cytom 2015; 90: 61–72.

    Article  PubMed  Google Scholar 

  3. Mateo G, Montalban MA, Vidriales MB, Lahuerta JJ, Mateos MV, Gutierrez N et al. Prognostic value of immunophenotyping in multiple myeloma: a study by the PETHEMA/GEM cooperative study groups on patients uniformly treated with high-dose therapy. J Clin Oncol 2008; 26: 2737–2744.

    Article  PubMed  Google Scholar 

  4. Paiva B, Gutierrez NC, Chen X, Vidriales MB, Montalban MA, Rosinol L et al. Clinical significance of CD81 expression by clonal plasma cells in high-risk smoldering and symptomatic multiple myeloma patients. Leukemia 2012; 26: 1862–1869.

    Article  CAS  PubMed  Google Scholar 

  5. Bataille R, Jego G, Robillard N, Barille-Nion S, Harousseau JL, Moreau P et al. The phenotype of normal, reactive and malignant plasma cells. Identification of ‘many and multiple myelomas’ and of new targets for myeloma therapy. Haematologica 2006; 91: 1234–1240.

    CAS  PubMed  Google Scholar 

  6. Paiva B, Almeida J, Perez-Andres M, Mateo G, Lopez A, Rasillo A et al. Utility of flow cytometry immunophenotyping in multiple myeloma and other clonal plasma cell-related disorders. Cytometry B Clin Cytom 2010; 78: 239–252.

    PubMed  Google Scholar 

  7. Rawstron AC, Orfao A, Beksac M, Bezdickova L, Brooimans RA, Bumbea H et al. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 2008; 93: 431–438.

    Article  PubMed  Google Scholar 

  8. Shapiro-Shelef M, Calame K . Regulation of plasma-cell development. Nat Rev Immunol 2005; 5: 230–242.

    Article  CAS  PubMed  Google Scholar 

  9. Cobaleda C, Schebesta A, Delogu A, Busslinger M . Pax5: the guardian of B cell identity and function. Nat Immunol 2007; 8: 463–470.

    Article  CAS  PubMed  Google Scholar 

  10. Kozmik Z, Wang S, Dorfler P, Adams B, Busslinger M . The promoter of the CD19 gene is a target for the B-cell-specific transcription factor BSAP. Mol Cell Biol 1992; 12: 2662–2672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cocco M, Stephenson S, Care MA, Newton D, Barnes NA, Davison A et al. In vitro generation of long-lived human plasma cells. J Immunol 2012; 189: 5773–5785.

    Article  CAS  PubMed  Google Scholar 

  12. Halliley JL, Tipton CM, Liesveld J, Rosenberg AF, Darce J, Gregoretti IV et al. Long-lived plasma cells are contained within the CD19(-)CD38(hi)CD138(+) subset in human bone marrow. Immunity 2015; 43: 132–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mei HE, Wirries I, Frolich D, Brisslert M, Giesecke C, Grun JR et al. A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. Blood 2015; 125: 1739–1748.

    Article  CAS  PubMed  Google Scholar 

  14. van Zelm MC, Smet J, Adams B, Mascart F, Schandene L, Janssen F et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest 2010; 120: 1265–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barrena S, Almeida J, Yunta M, Lopez A, Fernandez-Mosteirin N, Giralt M et al. Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Leukemia 2005; 19: 1376–1383.

    Article  CAS  PubMed  Google Scholar 

  16. Durie BG, Harousseau JL, Miguel JS, Blade J, Barlogie B, Anderson K et al. International uniform response criteria for multiple myeloma. Leukemia 2006; 20: 1467–1473.

    CAS  PubMed  Google Scholar 

  17. van Dongen JJ, Lhermitte L, Bottcher S, Almeida J, van der Velden VH, Flores-Montero J et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012; 26: 1908–1975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Perez-Andres M, Paiva B, Nieto WG, Caraux A, Schmitz A, Almeida J et al. Human peripheral blood B-cell compartments: a crossroad in B-cell traffic. Cytometry B Clin Cytom 2010; 78 (Suppl 1): S47–S60.

    Article  PubMed  Google Scholar 

  19. Berkowska MA, Driessen GJ, Bikos V, Grosserichter-Wagener C, Stamatopoulos K, Cerutti A et al. Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways. Blood 2011; 118: 2150–2158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van Zelm MC, Szczepanski T, van der Burg M, van Dongen JJ . Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion. J Exp Med 2007; 204: 645–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Paiva B, Paino T, Sayagues JM, Garayoa M, San-Segundo L, Martin M et al. Detailed characterization of multiple myeloma circulating tumor cells shows unique phenotypic, cytogenetic, functional, and circadian distribution profile. Blood 2013; 122: 3591–3598.

    Article  CAS  PubMed  Google Scholar 

  22. Paiva B, Corchete LA, Vidriales MB, Puig N, Maiso P, Rodriguez I et al. Phenotypic and genomic analysis of multiple myeloma minimal residual disease tumor cells: a new model to understand chemoresistance. Blood 2016; 127: 1896–1906.

    Article  CAS  PubMed  Google Scholar 

  23. Paino T, Paiva B, Sayagues JM, Mota I, Carvalheiro T, Corchete LA et al. Phenotypic identification of subclones in multiple myeloma with different chemoresistant, cytogenetic and clonogenic potential. Leukemia 2015; 29: 1186–1194.

    Article  CAS  PubMed  Google Scholar 

  24. Paiva B, Corchete LA, Vidriales MB, Garcia-Sanz R, Perez JJ, Aires-Mejia I et al. The cellular origin and malignant transformation of Waldenstrom macroglobulinemia. Blood 2015; 125: 2370–2380.

    Article  CAS  PubMed  Google Scholar 

  25. Usmani SZ, Crowley J, Hoering A, Mitchell A, Waheed S, Nair B et al. Improvement in long-term outcomes with successive Total Therapy trials for multiple myeloma: are patients now being cured? Leukemia 2013; 27: 226–232.

    Article  CAS  PubMed  Google Scholar 

  26. Agirre X, Castellano G, Pascual M, Heath S, Kulis M, Segura V et al. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers. Genome Res 2015; 25: 478–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zeijlemaker W, Gratama JW, Schuurhuis GJ . Tumor heterogeneity makes AML a ‘moving target’ for detection of residual disease. Cytometry B Clin Cytom 2014; 86: 3–14.

    Article  CAS  PubMed  Google Scholar 

  28. Leung-Hagesteijn C, Erdmann N, Cheung G, Keats JJ, Stewart AK, Reece DE et al. Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell 2013; 24: 289–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Amanna IJ, Carlson NE, Slifka MK . Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med 2007; 357: 1903–1915.

    Article  CAS  PubMed  Google Scholar 

  30. Manz RA, Thiel A, Radbruch A . Lifetime of plasma cells in the bone marrow. Nature 1997; 388: 133–134.

    Article  CAS  PubMed  Google Scholar 

  31. Vences-Catalan F, Kuo CC, Sagi Y, Chen H, Kela-Madar N, van Zelm MC et al. A mutation in the human tetraspanin CD81 gene is expressed as a truncated protein but does not enable CD19 maturation and cell surface expression. J Clin Immunol 2015; 35: 254–263.

    Article  CAS  PubMed  Google Scholar 

  32. Cherukuri A, Carter RH, Brooks S, Bornmann W, Finn R, Dowd CS et al. B cell signaling is regulated by induced palmitoylation of CD81. J Biol Chem 2004; 279: 31973–31982.

    Article  CAS  PubMed  Google Scholar 

  33. Cherukuri A, Shoham T, Sohn HW, Levy S, Brooks S, Carter R et al. The tetraspanin CD81 is necessary for partitioning of coligated CD19/CD21-B cell antigen receptor complexes into signaling-active lipid rafts. J Immunol 2004; 172: 370–380.

    Article  CAS  PubMed  Google Scholar 

  34. Shoham T, Rajapaksa R, Boucheix C, Rubinstein E, Poe JC, Tedder TF et al. The tetraspanin CD81 regulates the expression of CD19 during B cell development in a postendoplasmic reticulum compartment. J Immunol 2003; 171: 4062–4072.

    Article  CAS  PubMed  Google Scholar 

  35. Tokoyoda K, Hauser AE, Nakayama T, Radbruch A . Organization of immunological memory by bone marrow stroma. Nat Rev Immunol 2010; 10: 193–200.

    Article  CAS  PubMed  Google Scholar 

  36. Rozanski CH, Utley A, Carlson LM, Farren MR, Murray M, Russell LM et al. CD28 promotes plasma cell survival, sustained antibody responses, and BLIMP-1 upregulation through its distal PYAP proline motif. J Immunol 2015; 194: 4717–4728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kulis M, Heath S, Bibikova M, Queiros AC, Navarro A, Clot G et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet 2012; 44: 1236–1242.

    Article  CAS  PubMed  Google Scholar 

  38. Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13: 484–492.

    Article  CAS  PubMed  Google Scholar 

  39. Chaidos A, Barnes CP, Cowan G, May PC, Melo V, Hatjiharissi E et al. Clinical drug resistance linked to interconvertible phenotypic and functional states of tumor-propagating cells in multiple myeloma. Blood 2013; 121: 318–328.

    Article  CAS  PubMed  Google Scholar 

  40. Garfall AL, Maus MV, Hwang WT, Lacey SF, Mahnke YD, Melenhorst JJ et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med 2015; 373: 1040–1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y et al. Characterization of clonogenic multiple myeloma cells. Blood 2004; 103: 2332–2336.

    Article  CAS  PubMed  Google Scholar 

  42. Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, Kim J et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 2007; 104: 4048–4053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Puig N, Sarasquete ME, Balanzategui A, Martinez J, Paiva B, Garcia H et al. Critical evaluation of ASO RQ-PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry Blood 2014; 28: 391–397.

    CAS  Google Scholar 

  44. Paiva B, Gutierrez NC, Rosinol L, Vidriales MB, Montalban MA, Martinez-Lopez J et al. High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. Blood 2012; 119: 687–691.

    Article  CAS  PubMed  Google Scholar 

  45. Martinez-Lopez J, Lahuerta JJ, Pepin F, Gonzalez M, Barrio S, Ayala R et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood 2014; 123: 3073–3079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rawstron AC, Gregory WM, de Tute RM, Davies FE, Bell SE, Drayson MT et al. Minimal residual disease in myeloma by flow cytometry: independent prediction of survival benefit per log reduction. Blood 2015; 125: 1932–1935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yaccoby S . The phenotypic plasticity of myeloma plasma cells as expressed by dedifferentiation into an immature, resilient, and apoptosis-resistant phenotype. Clin Cancer Res 2005; 11: 7599–7606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Paiva B, van Dongen JJ, Orfao A . New criteria for response assessment: role of minimal residual disease in multiple myeloma. Blood 2015; 125: 3059–3068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge all the participants of the Spanish Myeloma Group. This study was supported by the Cooperative Research Thematic Network grants RD12/0036/0048, RD12/0036/0058, RD12/0036/0046, RD12/0036/0068, RD12/0036/0069, and RD12/0036/0061 of the Red de Cancer (Cancer Network of Excellence); Instituto de Salud Carlos III, Spain, Instituto de Salud Carlos III/Subdirección General de Investigación Sanitaria (FIS: PI060339; 06/1354; 02/0905; 01/0089/01-02; PS09/01897/01370; PI13/01469, PI14/01867, G03/136; Sara Borrell: CD13/00340 and CD12/00540); Fundació La Marató de TV3 (20132130-31-32) and Asociación Española Contra el Cáncer (GCB120981SAN). The study was also supported internationally by the International Myeloma Foundation (IMF) Junior Grant, the Black Swan Research Initiative of the IMF, the Multiple Myeloma Research Foundation research fellow award, the Qatar National Research Fund (QNRF) Award No. 7-916-3-237, Marie Curie (LincMHeM-330598), the AACR-Millennium Fellowship in Multiple Myeloma Research (15-40-38-PAIV), Leukemia Research Foundation and the European Research Council (ERC) 2015 Starting Grant.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J F San-Miguel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paiva, B., Puig, N., Cedena, M. et al. Differentiation stage of myeloma plasma cells: biological and clinical significance. Leukemia 31, 382–392 (2017). https://doi.org/10.1038/leu.2016.211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.211

This article is cited by

Search

Quick links