Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Decreased cortical muscarinic receptors define a subgroup of subjects with schizophrenia

Abstract

Schizophrenia is widely acknowledged as being a syndrome, consisting of an undefined number of diseases probably with differing pathologies. Although studying a syndrome makes the identification of an underlying pathology more difficult; neuroimaging, neuropsychopharmacological and post-mortem brain studies all implicate muscarinic acetylcholine receptors (CHRM) in the pathology of the disorder. We have established that the CHRM1 is selectively decreased in the dorsolateral prefrontal cortex of subjects with schizophrenia. To expand this finding, we wanted to ascertain whether decreased cortical CHRMs might (1) define a subgroup of schizophrenia and/or (2) be related to CHRM1 genotype. We assessed cortical [3H]pirenzepine binding and sequenced the CHRM1 in 80 subjects with schizophrenia and 74 age sex-matched control subjects. Kernel density estimation showed that [3H]pirenzepine binding in BA9 divided the schizophrenia, but not control, cohort into two distinct populations. One of the schizophrenia cohorts, comprising 26% of all subjects with the disorder, had a 74% reduction in mean cortical [3H]pirenzepine binding compared to controls. We suggest that these individuals make up ‘muscarinic receptor-deficit schizophrenia’ (MRDS). The MRDS could not be separated from other subjects with schizophrenia by CHRM1 sequence, gender, age, suicide, duration of illness or any particular drug treatment. Being able to define a subgroup within schizophrenia using a central biological parameter is a pivotal step towards understanding the biochemistry underlying at least one form of the disorder and may represent a biomarker that can be used in neuroimaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Jablensky A . Subtyping schizophrenia: implications for genetic research. Mol Psychiatry 2006; 11: 815–836.

    Article  CAS  PubMed  Google Scholar 

  2. Drut R, Rua EC . Histopathologic diagnosis of celiac disease in children without clinical evidence of malabsorption. Int J Surg Pathol 2007; 15: 354–357.

    Article  PubMed  Google Scholar 

  3. Pope FM, Nicholls AC, McPheat J, Talmud P, Owen R . Collagen genes and proteins in osteogenesis imperfecta. J Med Genet 1985; 22: 466–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hallmayer JF, Kalaydjieva L, Badcock J, Dragovic M, Howell S, Michie PT et al. Genetic evidence for a distinct subtype of schizophrenia characterized by pervasive cognitive deficit. Am J Hum Genet 2005; 77: 468–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn (text revision). American Psychiatric Association: Washington, DC, 2000.

  6. Mirza NR, Peters D, Sparks RG . Xanomeline and the antipsychotic potential of muscarinic receptor subtype selective agonists. CNS Drug Rev 2003; 9: 159–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weiner DM, Meltzer HY, Veinbergs I, Donohue EM, Spalding TA, Smith TT et al. The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine. Psychopharmacology (Berl) 2004; 177: 207–216.

    Article  CAS  Google Scholar 

  8. Raedler TJ, Knable MB, Jones DW, Urbina RA, Gorey JG, Lee KS et al. In vivo determination of muscarinic acetylcholine receptor availability in schizophrenia. Am J Psychiatry 2003; 160: 118–127.

    Article  PubMed  Google Scholar 

  9. Crook JM, Tomaskovic-Crook E, Copolov DL, Dean B . Decreased muscarinic receptor binding in subjects with schizophrenia: a study of the human hippocampal formation. Biol Psychiatry 2000; 48: 381–388.

    Article  CAS  PubMed  Google Scholar 

  10. Crook JM, Tomaskovic-Crook E, Copolov DL, Dean B . Low muscarinic receptor binding in prefrontal cortex from subjects with schizophrenia: a study of Brodmann's areas 8, 9, 10, and 46 and the effects of neuroleptic drug treatment. Am J Psychiatry 2001; 158: 918–925.

    Article  CAS  PubMed  Google Scholar 

  11. Zavitsanou K, Katsifis A, Mattner F, Xu-Feng H . Investigation of m1/m4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacology 2004; 29: 619–625.

    Article  PubMed  Google Scholar 

  12. Raedler TJ, Bymaster FP, Tandon R, Copolov D, Dean B . Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 2006; 12: 232–246.

    Article  PubMed  Google Scholar 

  13. Dean B, McLeod M, Keriakous D, McKenzie J, Scarr E . Decreased muscarinic(1) receptors in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 2002; 7: 1083–1091.

    Article  CAS  PubMed  Google Scholar 

  14. Scarr E, Keriakous D, Crossland N, Dean B . No change in cortical muscarinic M2, M3 receptors or [(35)S]GTPgammaS binding in schizophrenia. Life Sci 2006; 78: 1231–1237.

    Article  CAS  PubMed  Google Scholar 

  15. Mancama D, Arranz MJ, Landau S, Kerwin R . Reduced expression of the muscarinic 1 receptor cortical subtype in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2003; 119: 2–6.

    Article  Google Scholar 

  16. Liao DL, Hong CJ, Chen HM, Chen YE, Lee SM, Chang CY et al. Association of muscarinic m1 receptor genetic polymorphisms with psychiatric symptoms and cognitive function in schizophrenic patients. Neuropsychobiology 2003; 48: 72–76.

    Article  CAS  PubMed  Google Scholar 

  17. Kingsbury AE, Foster OJ, Nisbet AP, Cairns N, Bray L, Eve DJ et al. Tissue pH as an indicator of mRNA preservation in human post-mortem brain. Brain Res Mol Brain Res 1995; 28: 311–318.

    Article  CAS  PubMed  Google Scholar 

  18. Hill C, Keks N, Roberts S, Opeskin K, Dean B, Copolov D . Diagnostic Instrument for Brain Studies. Mental Health Research Institute: Melbourne, 1999.

    Google Scholar 

  19. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn American Psychiatric Association: Washington, DC, 1994.

  20. Remington GJ . Antipsychotics (Neuroleptics). In Bezchlibnyk-Butler KZ and Jeffries JJ (eds). Clincal Handbook of Psychotropic Drugs. Hogrefe & Huber: Seattle, Toronto, Göttingen, Bern, 1999, pp 55–84.

    Google Scholar 

  21. Strauss WM . Preparation of Genomic DNA from mammalian tissue. In: Crawley JN, Gerfen CR, Rogawski MA, Sibley DR, Skolnick P, and Way S (eds). Current Protocols in Neuroscience. John Wiley & Sons, Inc.: Hoboken, 1999, pp A.1H.1–A.1H.3.

    Google Scholar 

  22. Dean B, Crook JM, Opeskin K, Hill C, Keks N, Copolov DL . The density of muscarinic M1 receptors is decreased in the caudate-putamen of subjects with schizophrenia. Mol Psychiatry 1996; 1: 54–58.

    CAS  PubMed  Google Scholar 

  23. Rodbard D . Mathematics and statistics of ligand assays. In: Langan J and Clapp JJ (eds). Ligand Assay: Analysis of International Developments on Isotopic and Nonisotopic Immunoassay. Masson: New York, 1981, pp 55–101.

    Google Scholar 

  24. Dean B, Pavey G, Opeskin K . [3H]raclopride binding to brain tissue from subjects with schizophrenia: methodological aspects. Neuropharmacology 1997; 36: 779–786.

    Article  CAS  PubMed  Google Scholar 

  25. Dean B, Soulby A, Evin G, Scarr E . Changed cholinergic markers in Brodmann's area 6 from subjects with schizophrenia. Neuroscience Meeting Planner San Diego, CA: Society for Neuroscience, 2007 CD-ROM. 118.8; abstract.

  26. Bennett Jr JP, Enna SJ, Bylund DB, Gillin JC, Wyatt RJ, Snyder SH . Neurotransmitter receptors in frontal cortex of schizophrenics. Arch Gen Psychiatry 1979; 36: 927–934.

    Article  CAS  PubMed  Google Scholar 

  27. Moriya H, Takagi Y, Nakanishi T, Hayashi M, Tani T, Hirotsu I . Affinity profiles of various muscarinic antagonists for cloned human muscarinic acetylcholine receptor (mAChR) subtypes and mAChRs in rat heart and submandibular gland. Life Sci 1999; 64: 2351–2358.

    Article  CAS  PubMed  Google Scholar 

  28. Scarr E, Sundram S, Keriakous D, Dean B . Altered hippocampal muscarinic M4, but not M1, receptor expression from subjects with schizophrenia. Biol Psychiatry 2007; 61: 1161–1170.

    Article  CAS  PubMed  Google Scholar 

  29. Flynn DD, Ferrari-DiLeo G, Mash DC, Levey AI . Differential regulation of molecular subtypes of muscarinic receptors in Alzheimer's disease. J Neurochem 1995; 64: 1888–1891.

    Article  CAS  PubMed  Google Scholar 

  30. Lucas JL, DeYoung JA, Sadee W . Single nucleotide polymorphisms of the human M1 muscarinic acetylcholine receptor gene. AAPS PharmSci 2001; 3: E31.

    Article  CAS  PubMed  Google Scholar 

  31. Hughes JR, Frances RJ . How to help psychiatric patients stop smoking. Psychiatr Serv 1995; 46: 435–436.

    Article  CAS  PubMed  Google Scholar 

  32. Falk L, Nordberg A, Seiger A, Kjaeldgaard A, Hellstrom-Lindahl E . Smoking during early pregnancy affects the expression pattern of both nicotinic and muscarinic acetylcholine receptors in human first trimester brainstem and cerebellum. Neuroscience 2005; 132: 389–397.

    Article  CAS  PubMed  Google Scholar 

  33. Zavitsanou K, Nguyen VH, Han M, Huang XF . Effects of typical and atypical antipsychotic drugs on rat brain muscarinic receptors. Neurochem Res 2007; 32: 525–532.

    Article  CAS  PubMed  Google Scholar 

  34. Han M, Newell K, Zavitsanou K, Deng C, Huang XF . Effects of antipsychotic medication on muscarinic M1 receptor mRNA expression in the rat brain. J Neurosci Res 2007; 86: 457–464, e-pub ahead of print, doi: 10.1002/jnr.21491.

    Article  Google Scholar 

  35. Lee W, Wolfe BB . Regulation of muscarinic receptor subtypes and their responsiveness in rat brain following chronic atropine administration. Mol Pharmacol 1989; 36: 749–757.

    CAS  PubMed  Google Scholar 

  36. Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM et al. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 2003; 6: 51–58.

    Article  CAS  PubMed  Google Scholar 

  37. MacDonald III AW, Cohen JD, Stenger VA, Carter CS . Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 2000; 288: 1835–1838.

    Article  CAS  PubMed  Google Scholar 

  38. Dean B, Scarr E . Antipsychotic drugs: evolving mechanisms of action with improved therapeutic benefits. Curr Drug Targets CNS Neurol Disord 2004; 3: 217–225.

    Article  CAS  PubMed  Google Scholar 

  39. Gray JA, Roth BL . Molecular targets for treating cognitive dysfunction in schizophrenia. Schizophr Bull 2007; 33: 1100–1119.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bymaster FP, McKinzie K, Rasmussen K, Tzavara ET, Nomikos GG, Shekhar A et al. Antipsychotic activity of muscarinic agonists in animals and humans. Int J Neuropsychopharmacol 2004; 7(suppl 1): S16–S17. abstract.

    Google Scholar 

  41. Bymaster FP, Felder C, Ahmed S, McKinzie D . Muscarinic receptors as a target for drugs treating schizophrenia. Curr Drug Targets CNS and Neurol Disord 2002; 1: 163–181.

    Article  CAS  Google Scholar 

  42. Tzavara ET, Bymaster FP, Davis RJ, Wade MR, Perry KW, Wess J et al. M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J 2004; 18: 1410–1412.

    Article  CAS  PubMed  Google Scholar 

  43. Zubieta JK, Koeppe RA, Frey KA, Kilbourn MR, Mangner TJ, Foster NL et al. Assessment of muscarinic receptor concentrations in aging and Alzheimer disease with [11C]NMPB and PET. Synapse 2001; 39: 275–287.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mrs Jacyln Bartlett, Ms Suzette Sheppard and Mr Geoff Pavey for technical assistance; Dr Kenneth Opeskin, Ms Christine Hill, Professor Nick Keks and Professor David Copolov contributed towards collecting the tissue and clinical information relating to this study.

This study was supported in part by grants-in-aid from the National Health and Medical Research Council (Project Grant no. 350344), The Rebecca L Cooper Medical Research Foundation and the Wood's Family Research Program. ES was the Ronald Philip Griffiths Research Fellow and the recipient of a NARSAD 2005 Young Investigator award, She is now the Royce Abbey Post-Doctoral Fellow. BD is an NH&MRC Senior Research Fellow (no.; 400016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Scarr.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scarr, E., Cowie, T., Kanellakis, S. et al. Decreased cortical muscarinic receptors define a subgroup of subjects with schizophrenia. Mol Psychiatry 14, 1017–1023 (2009). https://doi.org/10.1038/mp.2008.28

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.28

Keywords

This article is cited by

Search

Quick links