Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Clearance mechanisms of Alzheimer's amyloid-β peptide: implications for therapeutic design and diagnostic tests

A Corrigendum to this article was published on 18 November 2009

Abstract

Currently, the ‘amyloid hypothesis’ is the most widely accepted explanation for the pathogenesis of Alzheimer's disease (AD). According to this hypothesis, altered metabolism of the amyloid-β (Aβ) peptide is central to the pathological cascade involved in the pathogenesis of AD. Although Aβ is produced by almost every cell in the body, a physiological function for the peptide has not been determined, and the pathways by which Aβ leads to cognitive dysfunction and cell death are unclear. Numerous therapeutic approaches that target the production, toxicity and removal of Aβ are being developed worldwide. Although therapeutic treatment for AD may be imminent, the value and effectiveness of such treatment are largely dependent on early diagnosis of the disease. This review summarizes current knowledge of Aβ clearance, transport and degradation, and evaluates the use of such information in the development of diagnostic tools. The conflicting results of plasma Aβ ELISAs are discussed, as are the more promising results of Aβ imaging by positron emission tomography. Current knowledge of Aβ-binding proteins and Aβ-degrading enzymes is analysed in the context of a potential therapy for AD. Transport across the blood–brain barrier by the receptor for advanced glycation end products and efflux via the multi-ligand lipoprotein receptor LRP-1 is also reviewed. Enhancing clearance and degradation of Aβ remains an attractive therapeutic strategy, and improved understanding of Aβ clearance may lead to advances in diagnostics and interventions designed to prevent or delay the onset of AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Glenner GG, Wong CW . Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120: 885–890.

    Article  CAS  PubMed  Google Scholar 

  2. Glenner GG, Wong CW . Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 1984; 122: 1131–1135.

    Article  CAS  PubMed  Google Scholar 

  3. Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RN, Beyreuther K . Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J 1985; 4: 2757–2763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kuo YM, Emmerling MR, Vigo-Pelfrey C, Kasunic TC, Kirkpatrick JB, Murdoch GH et al. Water-soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem 1996; 271: 4077–4081.

    Article  CAS  PubMed  Google Scholar 

  5. Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A et al. Assembly and aggregation properties of synthetic Alzheimer's A4/beta amyloid peptide analogs. J Biol Chem 1992; 267: 546–554.

    CAS  PubMed  Google Scholar 

  6. Haass C, Hung AY, Selkoe DJ, Teplow DB . Mutations associated with a locus for familial Alzheimer's disease result in alternative processing of amyloid beta-protein precursor. J Biol Chem 1994; 269: 17741–17748.

    CAS  PubMed  Google Scholar 

  7. Verdile G, Fuller S, Atwood CS, Laws SM, Gandy SE, Martins RN . The role of beta amyloid in Alzheimer's disease: still a cause of everything or the only one who got caught? Pharmacol Res 2004; 50: 397–409.

    Article  CAS  PubMed  Google Scholar 

  8. Wirths O, Multhaup G, Bayer TA . A modified beta-amyloid hypothesis: intraneuronal accumulation of the beta-amyloid peptide—the first step of a fatal cascade. J Neurochem 2004; 91: 513–520.

    Article  CAS  PubMed  Google Scholar 

  9. Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR . An English translation of Alzheimer's 1907 paper, ‘Uber eine eigenartige Erkankung der Hirnrinde’. Clin Anat 1995; 8: 429–431.

    Article  CAS  PubMed  Google Scholar 

  10. Cai XD, Golde TE, Younkin SG . Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Science 1993; 259: 514–516.

    Article  CAS  PubMed  Google Scholar 

  11. Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P et al. Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature 1992; 360: 672–674.

    Article  CAS  PubMed  Google Scholar 

  12. Eckman CB, Mehta ND, Crook R, Perez-tur J, Prihar G, Pfeiffer E et al. A new pathogenic mutation in the APP gene (I716V) increases the relative proportion of A beta 42(43). Hum Mol Genet 1997; 6: 2087–2089.

    Article  CAS  PubMed  Google Scholar 

  13. Forman MS, Cook DG, Leight S, Doms RW, Lee VM . Differential effects of the Swedish mutant amyloid precursor protein on beta-amyloid accumulation and secretion in neurons and nonneuronal cells. J Biol Chem 1997; 272: 32247–32253.

    Article  CAS  PubMed  Google Scholar 

  14. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 1991; 349: 704–706.

    Article  CAS  PubMed  Google Scholar 

  15. Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson L, Nemens E et al. Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14. Science 1992; 258: 668–671.

    Article  CAS  PubMed  Google Scholar 

  16. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 1995; 375: 754–760.

    Article  CAS  PubMed  Google Scholar 

  17. St George-Hyslop P, Haines J, Rogaev E, Mortilla M, Vaula G, Pericak-Vance M et al. Genetic evidence for a novel familial Alzheimer's disease locus on chromosome 14. Nat Genet 1992; 2: 330–334.

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki N, Cheung TT, Cai XD, Odaka A, Otvos Jr L, Eckman C et al. An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science 1994; 264: 1336–1340.

    Article  CAS  PubMed  Google Scholar 

  19. Van Broeckhoven C, Backhovens H, Cruts M, De Winter G, Bruyland M, Cras P et al. Mapping of a gene predisposing to early-onset Alzheimer's disease to chromosome 14q24.3. Nat Genet 1992; 2: 335–339.

    Article  CAS  PubMed  Google Scholar 

  20. Weitkamp LR, Nee L, Keats B, Polinsky RJ, Guttormsen S . Alzheimer disease: evidence for susceptibility loci on chromosomes 6 and 14. Am J Hum Genet 1983; 35: 443–453.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Morris JC, Storandt M, McKeel Jr DW, Rubin EH, Price JL, Grant EA et al. Cerebral amyloid deposition and diffuse plaques in ‘normal’ aging: evidence for presymptomatic and very mild Alzheimer's disease. Neurology 1996; 46: 707–719.

    Article  CAS  PubMed  Google Scholar 

  22. Davis DG, Schmitt FA, Wekstein DR, Markesbery WR . Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 1999; 58: 376–388.

    Article  CAS  PubMed  Google Scholar 

  23. Bishop GM, Robinson SR . The amyloid hypothesis: let sleeping dogmas lie? Neurobiol Aging 2002; 23: 1101–1105.

    Article  CAS  PubMed  Google Scholar 

  24. Fonte J, Miklossy J, Atwood C, Martins R . The severity of cortical Alzheimer's type changes is positively correlated with increased amyloid-beta levels: resolubilization of amyloid-beta with transition metal ion chelators. J Alzheimers Dis 2001; 3: 209–219.

    Article  CAS  PubMed  Google Scholar 

  25. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L et al. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am J Pathol 1999; 155: 853–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K et al. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann Neurol 1999; 46: 860–866.

    Article  CAS  PubMed  Google Scholar 

  27. Fodero-Tavoletti MT, Smith DP, McLean CA, Adlard PA, Barnham KJ, Foster LE et al. In vitro characterization of Pittsburgh compound-B binding to Lewy bodies. J Neurosci 2007; 27: 10365–10371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Dickson DW, Trojanowski JQ, Lee VM . The levels of soluble versus insoluble brain Abeta distinguish Alzheimer's disease from normal and pathologic aging. Exp Neurol 1999; 158: 328–337.

    Article  CAS  PubMed  Google Scholar 

  29. Hellstrom-Lindahl E, Mousavi M, Ravid R, Nordberg A . Reduced levels of Abeta 40 and Abeta 42 in brains of smoking controls and Alzheimer's patients. Neurobiol Dis 2004; 15: 351–360.

    Article  CAS  PubMed  Google Scholar 

  30. Li R, Lindholm K, Yang LB, Yue X, Citron M, Yan R et al. Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer's disease patients. Proc Natl Acad Sci USA 2004; 101: 3632–3637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roher AE, Chaney MO, Kuo YM, Webster SD, Stine WB, Haverkamp LJ et al. Morphology and toxicity of Abeta-(1–42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer's disease. J Biol Chem 1996; 271: 20631–20635.

    Article  CAS  PubMed  Google Scholar 

  32. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M et al. Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 1998; 95: 6448–6453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B et al. Soluble oligomers of beta amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 2002; 924: 133–140.

    Article  CAS  PubMed  Google Scholar 

  34. Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM et al. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 1999; 19: 8876–8884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A et al. A specific amyloid-beta protein assembly in the brain impairs memory. Nature 2006; 440: 352–357.

    Article  CAS  PubMed  Google Scholar 

  36. Billings LM, Green KN, McGaugh JL, LaFerla FM . Learning decreases A beta*56 and tau pathology and ameliorates behavioral decline in 3xTg-AD mice. J Neurosci 2007; 27: 751–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Podlisny MB, Walsh DM, Amarante P, Ostaszewski BL, Stimson ER, Maggio JE et al. Oligomerization of endogenous and synthetic amyloid beta-protein at nanomolar levels in cell culture and stabilization of monomer by Congo red. Biochemistry 1998; 37: 3602–3611.

    Article  CAS  PubMed  Google Scholar 

  38. Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci 2005; 8: 79–84.

    Article  CAS  PubMed  Google Scholar 

  39. Kawarabayashi T, Shoji M, Younkin LH, Wen-Lang L, Dickson DW, Murakami T et al. Dimeric amyloid beta protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer's disease. J Neurosci 2004; 24: 3801–3809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 2004; 55: 306–319.

    Article  CAS  PubMed  Google Scholar 

  41. Nordberg A . Amyloid plaque imaging in vivo: current achievement and future prospects. Eur J Nucl Med Mol Imaging 2008; 35 (Suppl 1): S46–S50.

    Article  PubMed  Google Scholar 

  42. Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 2008; 29: 1456–1465.

    Article  CAS  PubMed  Google Scholar 

  43. Kemppainen NM, Aalto S, Wilson IA, Nagren K, Helin S, Bruck A et al. PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology 2007; 68: 1603–1606.

    Article  CAS  PubMed  Google Scholar 

  44. Pike KE, Savage G, Villemagne VL, Ng S, Moss SA, Maruff P et al. Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease. Brain 2007; 130: 2837–2844.

    Article  PubMed  Google Scholar 

  45. Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G et al. Imaging beta-amyloid burden in aging and dementia. Neurology 2007; 68: 1718–1725.

    Article  CAS  PubMed  Google Scholar 

  46. Blasko I, Kemmler G, Krampla W, Jungwirth S, Wichart I, Jellinger K et al. Plasma amyloid beta protein 42 in non-demented persons aged 75 years: effects of concomitant medication and medial temporal lobe atrophy. Neurobiol Aging 2005; 26: 1135–1143.

    Article  CAS  PubMed  Google Scholar 

  47. Mayeux R, Honig LS, Tang MX, Manly J, Stern Y, Schupf N et al. Plasma A[beta]40 and A[beta]42 and Alzheimer's disease: relation to age, mortality, and risk. Neurology 2003; 61: 1185–1190.

    Article  CAS  PubMed  Google Scholar 

  48. Mayeux R, Tang MX, Jacobs DM, Manly J, Bell K, Merchant C et al. Plasma amyloid beta-peptide 1–42 and incipient Alzheimer's disease. Ann Neurol 1999; 46: 412–416.

    Article  CAS  PubMed  Google Scholar 

  49. Pomara N, Willoughby LM, Sidtis JJ, Mehta PD . Selective reductions in plasma Abeta 1–42 in healthy elderly subjects during longitudinal follow-up: a preliminary report. Am J Geriatr Psychiatry 2005; 13: 914–917.

    PubMed  Google Scholar 

  50. Sundelof J, Giedraitis V, Irizarry MC, Sundstrom J, Ingelsson E, Ronnemaa E et al. Plasma beta amyloid and the risk of Alzheimer disease and dementia in elderly men: a prospective, population-based cohort study. Arch Neurol 2008; 65: 256–263.

    Article  PubMed  Google Scholar 

  51. Graff-Radford NR, Crook JE, Lucas J, Boeve BF, Knopman DS, Ivnik RJ et al. Association of low plasma Abeta42/Abeta40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch Neurol 2007; 64: 354–362.

    Article  PubMed  Google Scholar 

  52. van Oijen M, Hofman A, Soares HD, Koudstaal PJ, Breteler MM . Plasma Abeta(1–40) and Abeta(1–42) and the risk of dementia: a prospective case-cohort study. Lancet Neurol 2006; 5: 655–660.

    Article  CAS  PubMed  Google Scholar 

  53. Strozyk D, Blennow K, White LR, Launer LJ . CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 2003; 60: 652–656.

    Article  CAS  PubMed  Google Scholar 

  54. Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 2006; 59: 512–519.

    Article  CAS  PubMed  Google Scholar 

  55. Lannfelt L, Basun H, Vigo-Pelfrey C, Wahlund LO, Winblad B, Lieberburg I et al. Amyloid beta-peptide in cerebrospinal fluid in individuals with the Swedish Alzheimer amyloid precursor protein mutation. Neurosci Lett 1995; 199: 203–206.

    Article  CAS  PubMed  Google Scholar 

  56. Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L . Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 2006; 5: 228–234.

    Article  CAS  PubMed  Google Scholar 

  57. Galasko D, Chang L, Motter R, Clark CM, Kaye J, Knopman D et al. High cerebrospinal fluid tau and low amyloid beta42 levels in the clinical diagnosis of Alzheimer disease and relation to apolipoprotein E genotype. Arch Neurol 1998; 55: 937–945.

    Article  CAS  PubMed  Google Scholar 

  58. Herukka SK, Hallikainen M, Soininen H, Pirttila T . CSF Abeta42 and tau or phosphorylated tau and prediction of progressive mild cognitive impairment. Neurology 2005; 64: 1294–1297.

    Article  CAS  PubMed  Google Scholar 

  59. Iqbal K, Flory M, Khatoon S, Soininen H, Pirttila T, Lehtovirta M et al. Subgroups of Alzheimer's disease based on cerebrospinal fluid molecular markers. Ann Neurol 2005; 58: 748–757.

    Article  CAS  PubMed  Google Scholar 

  60. Andreasen N, Sjogren M, Blennow K . CSF markers for Alzheimer's disease: total tau, phospho-tau and Abeta42. World J Biol Psychiatry 2003; 4: 147–155.

    Article  PubMed  Google Scholar 

  61. Bibl M, Mollenhauer B, Esselmann H, Lewczuk P, Klafki HW, Sparbier K et al. CSF amyloid-beta-peptides in Alzheimer's disease, dementia with Lewy bodies and Parkinson's disease dementia. Brain 2006; 129: 1177–1187.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bibl M, Mollenhauer B, Esselmann H, Lewczuk P, Trenkwalder C, Brechlin P et al. CSF diagnosis of Alzheimer's disease and dementia with Lewy bodies. J Neural Transm 2006; 113: 1771–1778.

    Article  CAS  PubMed  Google Scholar 

  63. Mehta PD, Pirttila T . Increased cerebrospinal fluid A beta38/A beta42 ratio in Alzheimer disease. Neurodegener Dis 2005; 2: 242–245.

    Article  CAS  PubMed  Google Scholar 

  64. Hansson O, Zetterberg H, Buchhave P, Andreasson U, Londos E, Minthon L et al. Prediction of Alzheimer's disease using the CSF Abeta42/Abeta40 ratio in patients with mild cognitive impairment. Dement Geriatr Cogn Disord 2007; 23: 316–320.

    Article  CAS  PubMed  Google Scholar 

  65. Bateman RJ, Munsell LY, Morris JC, Swarm R, Yarasheski KE, Holtzman DM . Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat Med 2006; 12: 856–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Holliger P, Hudson PJ . Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005; 23: 1126–1136.

    Article  CAS  PubMed  Google Scholar 

  67. Solorzano-Vargas RS, Vasilevko V, Acero G, Ugen KE, Martinez R, Govezensky T et al. Epitope mapping and neuroprotective properties of a human single chain FV antibody that binds an internal epitope of amyloid-beta 1–42. Mol Immunol 2008; 45: 881–886.

    Article  CAS  PubMed  Google Scholar 

  68. Wang YJ, Pollard A, Zhong JH, Dong XY, Wu XB, Zhou HD et al. Intramuscular delivery of a single chain antibody gene reduces brain Abeta burden in a mouse model of Alzheimer's disease. Neurobiol Aging 2007; doi:10.1016/jneurobiolaging.2007.06.013 (e-pub ahead of print).

  69. Poduslo JF, Ramakrishnan M, Holasek SS, Ramirez-Alvarado M, Kandimalla KK, Gilles EJ et al. In vivo targeting of antibody fragments to the nervous system for Alzheimer's disease immunotherapy and molecular imaging of amyloid plaques. J Neurochem 2007; 102: 420–433.

    Article  CAS  PubMed  Google Scholar 

  70. Habicht G, Haupt C, Friedrich RP, Hortschansky P, Sachse C, Meinhardt J et al. Directed selection of a conformational antibody domain that prevents mature amyloid fibril formation by stabilizing A protofibrils. Proc Natl Acad Sci USA 2007; 104: 19232–19237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Deane R, Wu Z, Zlokovic BV . RAGE (yin) versus LRP (yang) balance regulates alzheimer amyloid beta-peptide clearance through transport across the blood-brain barrier. Stroke 2004; 35 (11 Suppl 1): 2628–2631.

    Article  CAS  PubMed  Google Scholar 

  72. Stern D, Yan SD, Yan SF, Schmidt AM . Receptor for advanced glycation endproducts: a multiligand receptor magnifying cell stress in diverse pathologic settings. Adv Drug Deliv Rev 2002; 54: 1615–1625.

    Article  CAS  PubMed  Google Scholar 

  73. Goldin A, Beckman JA, Schmidt AM, Creager MA . Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 2006; 114: 597–605.

    Article  CAS  PubMed  Google Scholar 

  74. Lue LF, Walker DG, Brachova L, Beach TG, Rogers J, Schmidt AM et al. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer's disease: identification of a cellular activation mechanism. Exp Neurol 2001; 171: 29–45.

    Article  CAS  PubMed  Google Scholar 

  75. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature 1996; 382: 685–691.

    Article  CAS  PubMed  Google Scholar 

  76. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 2003; 9: 907–913.

    Article  CAS  PubMed  Google Scholar 

  77. Mackic JB, Stins M, McComb JG, Calero M, Ghiso J, Kim KS et al. Human blood-brain barrier receptors for Alzheimer's amyloid-beta 1–40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J Clin Invest 1998; 102: 734–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Du Yan S, Zhu H, Fu J, Yan SF, Roher A, Tourtellotte WW et al. Amyloid-beta peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease. Proc Natl Acad Sci USA 1997; 94: 5296–5301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 1999; 97: 889–901.

    Article  CAS  PubMed  Google Scholar 

  80. Dyrks T, Dyrks E, Hartmann T, Masters C, Beyreuther K . Amyloidogenicity of beta A4 and beta A4-bearing amyloid protein precursor fragments by metal-catalyzed oxidation. J Biol Chem 1992; 267: 18210–18217.

    CAS  PubMed  Google Scholar 

  81. Kuo YM, Webster S, Emmerling MR, De Lima N, Roher AE . Irreversible dimerization/tetramerization and post-translational modifications inhibit proteolytic degradation of A beta peptides of Alzheimer's disease. Biochim Biophys Acta 1998; 1406: 291–298.

    Article  CAS  PubMed  Google Scholar 

  82. Pratico D, Uryu K, Leight S, Trojanoswki JQ, Lee VM . Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 2001; 21: 4183–4187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rogers JT, Leiter LM, McPhee J, Cahill CM, Zhan SS, Potter H et al. Translation of the alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5′-untranslated region sequences. J Biol Chem 1999; 274: 6421–6431.

    Article  CAS  PubMed  Google Scholar 

  84. Sheng JG, Zhu SG, Jones RA, Griffin WS, Mrak RE . Interleukin-1 promotes expression and phosphorylation of neurofilament and tau proteins in vivo. Exp Neurol 2000; 163: 388–391.

    Article  CAS  PubMed  Google Scholar 

  85. Bellinger FP, Madamba SG, Campbell IL, Siggins GR . Reduced long-term potentiation in the dentate gyrus of transgenic mice with cerebral overexpression of interleukin-6. Neurosci Lett 1995; 198: 95–98.

    Article  CAS  PubMed  Google Scholar 

  86. Heyser CJ, Masliah E, Samimi A, Campbell IL, Gold LH . Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. Proc Natl Acad Sci USA 1997; 94: 1500–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fine SM, Angel RA, Perry SW, Epstein LG, Rothstein JD, Dewhurst S et al. Tumor necrosis factor alpha inhibits glutamate uptake by primary human astrocytes. Implications for pathogenesis of HIV-1 dementia. J Biol Chem 1996; 271: 15303–15306.

    Article  CAS  PubMed  Google Scholar 

  88. Geroldi D, Falcone C, Minoretti P, Emanuele E, Arra M, D'Angelo A . High levels of soluble receptor for advanced glycation end products may be a marker of extreme longevity in humans. J Am Geriatr Soc 2006; 54: 1149–1150.

    Article  PubMed  Google Scholar 

  89. Geroldi D, Falcone C, Emanuele E, D'Angelo A, Calcagnino M, Buzzi MP et al. Decreased plasma levels of soluble receptor for advanced glycation end-products in patients with essential hypertension. J Hypertens 2005; 23: 1725–1729.

    Article  CAS  PubMed  Google Scholar 

  90. Falcone C, Emanuele E, D'Angelo A, Buzzi MP, Belvito C, Cuccia M et al. Plasma levels of soluble receptor for advanced glycation end products and coronary artery disease in nondiabetic men. Arterioscler Thromb Vasc Biol 2005; 25: 1032–1037.

    Article  CAS  PubMed  Google Scholar 

  91. Emanuele E, D'Angelo A, Tomaino C, Binetti G, Ghidoni R, Politi P et al. Circulating levels of soluble receptor for advanced glycation end products in Alzheimer disease and vascular dementia. Arch Neurol 2005; 62: 1734–1736.

    Article  PubMed  Google Scholar 

  92. Geroldi D, Falcone C, Emanuele E . Soluble receptor for advanced glycation end products: from disease marker to potential therapeutic target. Curr Med Chem 2006; 13: 1971–1978.

    Article  CAS  PubMed  Google Scholar 

  93. Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K . Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 1998; 95: 6460–6464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Howland DS, Trusko SP, Savage MJ, Reaume AG, Lang DM, Hirsch JD et al. Modulation of secreted beta-amyloid precursor protein and amyloid beta- peptide in brain by cholesterol. J Biol Chem 1998; 273: 16576–16582.

    Article  CAS  PubMed  Google Scholar 

  95. Fassbender K, Simons M, Bergmann C, Stroick M, Lutjohann D, Keller P et al. Simvastatin strongly reduces levels of Alzheimer's disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci USA 2001; 98: 5856–5861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bodovitz S, Klein WL . Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein. J Biol Chem 1996; 271: 4436–4440.

    Article  CAS  PubMed  Google Scholar 

  97. Vega GL, Weiner MF, Lipton AM, Von Bergmann K, Lutjohann D, Moore C et al. Reduction in levels of 24S-hydroxycholesterol by statin treatment in patients with Alzheimer disease. Arch Neurol 2003; 60: 510–515.

    Article  PubMed  Google Scholar 

  98. Laskowitz DT, Goel S, Bennett ER, Matthew WD . Apolipoprotein E suppresses glial cell secretion of TNF alpha. J Neuroimmunol 1997; 76: 70–74.

    Article  CAS  PubMed  Google Scholar 

  99. Evans RM, Emsley CL, Gao S, Sahota A, Hall KS, Farlow MR et al. Serum cholesterol, APOE genotype, and the risk of Alzheimer's disease: a population-based study of African Americans. Neurology 2000; 54: 240–242.

    Article  CAS  PubMed  Google Scholar 

  100. Sparks DL, Scheff SW, Hunsaker III JC, Liu H, Landers T, Gross DR . Induction of Alzheimer-like beta-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol 1994; 126: 88–94.

    Article  CAS  PubMed  Google Scholar 

  101. Parvathy S, Ehrlich M, Pedrini S, Diaz N, Refolo L, Buxbaum JD et al. Atorvastatin-induced activation of Alzheimer's alpha secretase is resistant to standard inhibitors of protein phosphorylation-regulated ectodomain shedding. J Neurochem 2004; 90: 1005–1010.

    Article  CAS  PubMed  Google Scholar 

  102. Balakrishnan K, Verdile G, Mehta PD, Beilby J, Nolan D, Galvao DA et al. Plasma Abeta42 correlates positively with increased body fat in healthy individuals. J Alzheimers Dis 2005; 8: 269–282.

    Article  CAS  PubMed  Google Scholar 

  103. Refolo LM, Pappolla MA, LaFrancois J, Malester B, Schmidt SD, Thomas-Bryant T et al. A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer's disease. Neurobiol Dis 2001; 8: 890–899.

    Article  CAS  PubMed  Google Scholar 

  104. George AJ, Holsinger RM, McLean CA, Laughton KM, Beyreuther K, Evin G et al. APP intracellular domain is increased and soluble Abeta is reduced with diet-induced hypercholesterolemia in a transgenic mouse model of Alzheimer disease. Neurobiol Dis 2004; 16: 124–132.

    Article  CAS  PubMed  Google Scholar 

  105. Kang DE, Saitoh T, Chen X, Xia Y, Masliah E, Hansen LA et al. Genetic association of the low-density lipoprotein receptor-related protein gene (LRP), an apolipoprotein E receptor, with late-onset Alzheimer's disease. Neurology 1997; 49: 56–61.

    Article  CAS  PubMed  Google Scholar 

  106. Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B et al. Clearance of Alzheimer's amyloid-ss(1–40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 2000; 106: 1489–1499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K et al. LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron 2004; 43: 333–344.

    Article  CAS  PubMed  Google Scholar 

  108. Duguid JR, Bohmont CW, Liu NG, Tourtellotte WW . Changes in brain gene expression shared by scrapie and Alzheimer disease. Proc Natl Acad Sci USA 1989; 86: 7260–7264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. May PC, Johnson SA, Poirier J, Lampert-Etchells M, Finch CE . Altered gene expression in Alzheimer's disease brain tissue. Can J Neurol Sci 1989; 16: 473–476.

    Article  CAS  PubMed  Google Scholar 

  110. Oda T, Pasinetti GM, Osterburg HH, Anderson C, Johnson SA, Finch CE . Purification and characterization of brain clusterin. Biochem Biophys Res Commun 1994; 204: 1131–1136.

    Article  CAS  PubMed  Google Scholar 

  111. Choi-Miura NH, Ihara Y, Fukuchi K, Takeda M, Nakano Y, Tobe T et al. SP-40,40 is a constituent of Alzheimer's amyloid. Acta Neuropathol (Berl) 1992; 83: 260–264.

    Article  CAS  Google Scholar 

  112. Kida E, Choi-Miura NH, Wisniewski KE . Deposition of apolipoproteins E and J in senile plaques is topographically determined in both Alzheimer's disease and Down's syndrome brain. Brain Res 1995; 685: 211–216.

    Article  CAS  PubMed  Google Scholar 

  113. McGeer PL, Kawamata T, Walker DG . Distribution of clusterin in Alzheimer brain tissue. Brain Res 1992; 579: 337–341.

    Article  CAS  PubMed  Google Scholar 

  114. Pasinetti GM, Johnson SA, Oda T, Rozovsky I, Finch CE . Clusterin (SGP-2): a multifunctional glycoprotein with regional expression in astrocytes and neurons of the adult rat brain. J Comp Neurol 1994; 339: 387–400.

    Article  CAS  PubMed  Google Scholar 

  115. Calero M, Tokuda T, Rostagno A, Kumar A, Zlokovic B, Frangione B et al. Functional and structural properties of lipid-associated apolipoprotein J (clusterin). Biochem J 1999; 344 (Part 2): 375–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ghiso J, Matsubara E, Koudinov A, Choi-Miura NH, Tomita M, Wisniewski T et al. The cerebrospinal-fluid soluble form of Alzheimer's amyloid beta is complexed to SP-40,40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex. Biochem J 1993; 293 (Part 1): 27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Matsubara E, Soto C, Governale S, Frangione B, Ghiso J . Apolipoprotein J and Alzheimer's amyloid beta solubility. Biochem J 1996; 316 (Part 2): 671–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. DeMattos RB, O'Dell MA, Parsadanian M, Taylor JW, Harmony JA, Bales KR et al. Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 2002; 99: 10843–10848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Oda T, Wals P, Osterburg HH, Johnson SA, Pasinetti GM, Morgan TE et al. Clusterin (apoJ) alters the aggregation of amyloid beta-peptide (A beta 1–42) and forms slowly sedimenting A beta complexes that cause oxidative stress. Exp Neurol 1995; 136: 22–31.

    Article  CAS  PubMed  Google Scholar 

  120. Boggs LN, Fuson KS, Baez M, Churgay L, McClure D, Becker G et al. Clusterin (Apo J) protects against in vitro amyloid-beta (1–40) neurotoxicity. J Neurochem 1996; 67: 1324–1327.

    Article  CAS  PubMed  Google Scholar 

  121. DeMattos RB, Cirrito JR, Parsadanian M, May PC, O'Dell MA, Taylor JW et al. ApoE and clusterin cooperatively suppress abeta levels and deposition. Evidence that ApoE regulates extracellular abeta metabolism in vivo. Neuron 2004; 41: 193–202.

    Article  CAS  PubMed  Google Scholar 

  122. Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R et al. Transport pathways for clearance of human Alzheimer's amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 2007; 27: 909–918.

    Article  CAS  PubMed  Google Scholar 

  123. Zlokovic BV, Martel CL, Mackic JB, Matsubara E, Wisniewski T, McComb JG et al. Brain uptake of circulating apolipoproteins J and E complexed to Alzheimer's amyloid beta. Biochem Biophys Res Commun 1994; 205: 1431–1437.

    Article  CAS  PubMed  Google Scholar 

  124. Zlokovic BV, Martel CL, Matsubara E, McComb JG, Zheng G, McCluskey RT et al. Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood-brain and blood-cerebrospinal fluid barriers. Proc Natl Acad Sci USA 1996; 93: 4229–4234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Biere AL, Ostaszewski B, Stimson ER, Hyman BT, Maggio JE, Selkoe DJ . Amyloid beta-peptide is transported on lipoproteins and albumin in human plasma. J Biol Chem 1996; 271: 32916–32922.

    Article  CAS  PubMed  Google Scholar 

  126. Du Y, Bales KR, Dodel RC, Liu X, Glinn MA, Horn JW et al. Alpha2-macroglobulin attenuates beta-amyloid peptide 1–40 fibril formation and associated neurotoxicity of cultured fetal rat cortical neurons. J Neurochem 1998; 70: 1182–1188.

    Article  CAS  PubMed  Google Scholar 

  127. Hughes SR, Khorkova O, Goyal S, Knaeblein J, Heroux J, Riedel NG et al. Alpha2-macroglobulin associates with beta-amyloid peptide and prevents fibril formation. Proc Natl Acad Sci USA 1998; 95: 3275–3280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Eriksson S, Janciauskiene S, Lannfelt L . Alpha 1-antichymotrypsin regulates Alzheimer beta-amyloid peptide fibril formation. Proc Natl Acad Sci USA 1995; 92: 2313–2317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Janciauskiene S, Garcia de Frutos P, Carlemalm E, Dahlback B, Eriksson S . Inhibition of Alzheimer beta-peptide fibril formation by serum amyloid P component. J Biol Chem 1995; 270: 26041–26044.

    Article  CAS  PubMed  Google Scholar 

  130. Webster S, Rogers J . Relative efficacies of amyloid beta peptide (A beta) binding proteins in A beta aggregation. J Neurosci Res 1996; 46: 58–66.

    Article  CAS  PubMed  Google Scholar 

  131. Kuo YM, Emmerling MR, Lampert HC, Hempelman SR, Kokjohn TA, Woods AS et al. High levels of circulating Abeta42 are sequestered by plasma proteins in Alzheimer's disease. Biochem Biophys Res Commun 1999; 257: 787–791.

    Article  CAS  PubMed  Google Scholar 

  132. Kuo YM, Kokjohn TA, Kalback W, Luehrs D, Galasko DR, Chevallier N et al. Amyloid-beta peptides interact with plasma proteins and erythrocytes: implications for their quantitation in plasma. Biochem Biophys Res Commun 2000; 268: 750–756.

    Article  CAS  PubMed  Google Scholar 

  133. Bohrmann B, Tjernberg L, Kuner P, Poli S, Levet-Trafit B, Naslund J et al. Endogenous proteins controlling amyloid beta-peptide polymerization. Possible implications for beta-amyloid formation in the central nervous system and in peripheral tissues. J Biol Chem 1999; 274: 15990–15995.

    Article  CAS  PubMed  Google Scholar 

  134. Koudinov AR, Berezov TT, Kumar A, Koudinova NV . Alzheimer's amyloid beta interaction with normal human plasma high density lipoprotein: association with apolipoprotein and lipids. Clin Chim Acta 1998; 270: 75–84.

    Article  CAS  PubMed  Google Scholar 

  135. Wilson LM, Pham CL, Jenkins AJ, Wade JD, Hill AF, Perugini MA et al. High density lipoproteins bind Abeta and apolipoprotein C-II amyloid fibrils. J Lipid Res 2006; 47: 755–760.

    Article  CAS  PubMed  Google Scholar 

  136. Hyman BT, Terry RD . Apolipoprotein E, A beta, and Alzheimer disease. J Neuropathol Exp Neurol 1994; 53: 427–428.

    Article  CAS  PubMed  Google Scholar 

  137. Weisgraber KH . Apolipoprotein E: structure-function relationships. Adv Protein Chem 1994; 45: 249–302.

    Article  CAS  PubMed  Google Scholar 

  138. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 1993; 261: 921–923.

    Article  CAS  PubMed  Google Scholar 

  139. Taddei K, Clarnette R, Gandy SE, Martins RN . Increased plasma apolipoprotein E (apoE) levels in Alzheimer's disease. Neurosci Lett 1997; 223: 29–32.

    Article  PubMed  Google Scholar 

  140. Laws SM, Hone E, Gandy S, Martins RN . Expanding the association between the APOE gene and the risk of Alzheimer's disease: possible roles for APOE promoter polymorphisms and alterations in APOE transcription. J Neurochem 2003; 84: 1215–1236.

    Article  CAS  PubMed  Google Scholar 

  141. Laws SM, Hone E, Taddei K, Harper C, Dean B, McClean C et al. Variation at the APOE −491 promoter locus is associated with altered brain levels of apolipoprotein E. Mol Psychiatry 2002; 7: 886–890.

    Article  CAS  PubMed  Google Scholar 

  142. Strittmatter WJ, Weisgraber KH, Huang DY, Dong LM, Salvesen GS, Pericak-Vance M et al. Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci USA 1993; 90: 8098–8102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yang DS, Smith JD, Zhou Z, Gandy SE, Martins RN . Characterization of the binding of amyloid-beta peptide to cell culture-derived native apolipoprotein E2, E3, and E4 isoforms and to isoforms from human plasma. J Neurochem 1997; 68: 721–725.

    Article  CAS  PubMed  Google Scholar 

  144. LaDu MJ, Lukens JR, Reardon CA, Getz GS . Association of human, rat, and rabbit apolipoprotein E with beta-amyloid. J Neurosci Res 1997; 49: 9–18.

    Article  CAS  PubMed  Google Scholar 

  145. Hone E, Martins IJ, Jeoung M, Ji TH, Gandy SE, Martins RN . Alzheimer's disease amyloid-beta peptide modulates apolipoprotein E isoform specific receptor binding. J Alzheimers Dis 2005; 7: 303–314.

    Article  CAS  PubMed  Google Scholar 

  146. McGeer PL, Walker DG, Pitas RE, Mahley RW, McGeer EG . Apolipoprotein E4 (ApoE4) but not ApoE3 or ApoE2 potentiates beta- amyloid protein activation of complement in vitro. Brain Res 1997; 749: 135–138.

    Article  CAS  PubMed  Google Scholar 

  147. Jordan J, Galindo MF, Miller RJ, Reardon CA, Getz GS, LaDu MJ . Isoform-specific effect of apolipoprotein E on cell survival and beta-amyloid-induced toxicity in rat hippocampal pyramidal neuronal cultures. J Neurosci 1998; 18: 195–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. McNamara MJ, Gomez-Isla T, Hyman BT . Apolipoprotein E genotype and deposits of Abeta40 and Abeta42 in Alzheimer disease. Arch Neurol 1998; 55: 1001–1004.

    Article  CAS  PubMed  Google Scholar 

  149. Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 2000; 97: 2892–2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hartman RE, Laurer H, Longhi L, Bales KR, Paul SM, McIntosh TK et al. Apolipoprotein E4 influences amyloid deposition but not cell loss after traumatic brain injury in a mouse model of Alzheimer's disease. J Neurosci 2002; 22: 10083–10087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hone E, Martins IJ, Fonte J, Martins RN . Apolipoprotein E influences amyloid-beta clearance from the murine periphery. J Alzheimers Dis 2003; 5: 1–8.

    Article  CAS  PubMed  Google Scholar 

  152. Bales KR, Verina T, Dodel RC, Du Y, Altstiel L, Bender M et al. Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat Genet 1997; 17: 263–264.

    Article  CAS  PubMed  Google Scholar 

  153. Bales KR, Verina T, Cummins DJ, Du Y, Dodel RC, Saura J et al. Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 1999; 96: 15233–15238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ono K, Noguchi-Shinohara M, Samuraki M, Matsumoto Y, Yanase D, Iwasa K et al. Blood-borne factors inhibit Alzheimer's beta-amyloid fibril formation in vitro. Exp Neurol 2006; 202: 125–132.

    Article  CAS  PubMed  Google Scholar 

  155. Scacchi R, Ruggeri M, Gambina G, Martini MC, Corbo RM . Alpha2-macroglobulin deletion polymorphism and plasma levels in late onset Alzheimer's disease. Clin Chem Lab Med 2002; 40: 333–336.

    Article  CAS  PubMed  Google Scholar 

  156. Nishiyama E, Iwamoto N, Kimura M, Arai H . Serum amyloid P component level in Alzheimer's disease. Dementia 1996; 7: 256–259.

    CAS  PubMed  Google Scholar 

  157. Rudrasingham V, Wavrant-De Vrieze F, Lambert JC, Chakraverty S, Kehoe P, Crook R et al. Alpha-2 macroglobulin gene and Alzheimer disease. Nat Genet 1999; 22: 17–19; discussion 21–22.

    Article  PubMed  Google Scholar 

  158. Dodel RC, Du Y, Bales KR, Gao F, Eastwood B, Glazier B et al. Alpha2 macroglobulin and the risk of Alzheimer's disease. Neurology 2000; 54: 438–442.

    Article  CAS  PubMed  Google Scholar 

  159. Koster MN, Dermaut B, Cruts M, Houwing-Duistermaat JJ, Roks G, Tol J et al. The alpha2-macroglobulin gene in AD: a population-based study and meta-analysis. Neurology 2000; 55: 678–684.

    Article  CAS  PubMed  Google Scholar 

  160. Rogaeva EA, Premkumar S, Grubber J, Serneels L, Scott WK, Kawarai T et al. An alpha-2-macroglobulin insertion-deletion polymorphism in Alzheimer disease. Nat Genet 1999; 22: 19–22.

    Article  CAS  PubMed  Google Scholar 

  161. Dow DJ, Lindsey N, Cairns NJ, Brayne C, Robinson D, Huppert FA et al. Alpha-2 macroglobulin polymorphism and Alzheimer disease risk in the UK. Nat Genet 1999; 22: 16–17; author reply 21–22.

    Article  CAS  PubMed  Google Scholar 

  162. Blacker D, Wilcox MA, Laird NM, Rodes L, Horvath SM, Go RC et al. Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nat Genet 1998; 19: 357–360.

    Article  CAS  PubMed  Google Scholar 

  163. Nybo M, Olsen H, Jeune B, Andersen-Ranberg K, Holm Nielsen E, Svehag SE . Increased plasma concentration of serum amyloid P component in centenarians with impaired cognitive performance. Dement Geriatr Cogn Disord 1998; 9: 126–129.

    Article  CAS  PubMed  Google Scholar 

  164. Kimura M, Asada T, Uno M, Machida N, Kasuya K, Taniguchi Y et al. Assessment of cerebrospinal fluid levels of serum amyloid P component in patients with Alzheimer's disease. Neurosci Lett 1999; 273: 137–139.

    Article  CAS  PubMed  Google Scholar 

  165. Laws SM, Clarnette RM, Taddei K, Martins G, Paton A, Hallmayer J et al. APOE-epsilon4 and APOE −491A polymorphisms in individuals with subjective memory loss. Mol Psychiatry 2002; 7: 768–775.

    Article  CAS  PubMed  Google Scholar 

  166. DeKosky ST, Ikonomovic MD, Wang X, Farlow M, Wisniewski S, Lopez OL et al. Plasma and cerebrospinal fluid alpha1-antichymotrypsin levels in Alzheimer's disease: Correlation with cognitive impairment. Ann Neurol 2003; 53: 81–90.

    Article  CAS  PubMed  Google Scholar 

  167. Scacchi R, Ruggeri M, Gambina G, Martini MC, Ferrari G, Corbo RM . Plasma alpha1-antichymotrypsin in Alzheimer's disease; relationships with APOE genotypes. Neurobiol Aging 2001; 22: 413–416.

    Article  CAS  PubMed  Google Scholar 

  168. Chauhan A, Pirttila T, Chauhan VP, Mehta P, Wisniewski HM . Aggregation of amyloid beta-protein as function of age and apolipoprotein E in normal and Alzheimer's serum. J Neurol Sci 1998; 154: 159–163.

    Article  CAS  PubMed  Google Scholar 

  169. Ghiso J, Shayo M, Calero M, Ng D, Tomidokoro Y, Gandy S et al. Systemic catabolism of Alzheimer's Abeta40 and Abeta42. J Biol Chem 2004; 279: 45897–45908.

    Article  CAS  PubMed  Google Scholar 

  170. Mackic JB, Bading J, Ghiso J, Walker L, Wisniewski T, Frangione B et al. Circulating amyloid-beta peptide crosses the blood-brain barrier in aged monkeys and contributes to Alzheimer's disease lesions. Vascul Pharmacol 2002; 38: 303–313.

    Article  CAS  PubMed  Google Scholar 

  171. Mackic JB, Weiss MH, Miao W, Kirkman E, Ghiso J, Calero M et al. Cerebrovascular accumulation and increased blood-brain barrier permeability to circulating Alzheimer's amyloid beta peptide in aged squirrel monkey with cerebral amyloid angiopathy. J Neurochem 1998; 70: 210–215.

    Article  CAS  PubMed  Google Scholar 

  172. Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO . Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 2003; 9: 448–452.

    Article  CAS  PubMed  Google Scholar 

  173. Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 2003; 61: 46–54.

    Article  CAS  PubMed  Google Scholar 

  174. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000; 6: 916–919.

    Article  CAS  PubMed  Google Scholar 

  175. Holtzman DM, Bales KR, Paul SM, DeMattos RB . Abeta immunization and anti-Abeta antibodies: potential therapies for the prevention and treatment of Alzheimer's disease. Adv Drug Deliv Rev 2002; 54: 1603–1613.

    Article  CAS  PubMed  Google Scholar 

  176. Lemere CA, Beierschmitt A, Iglesias M, Spooner ET, Bloom JK, Leverone JF et al. Alzheimer's disease abeta vaccine reduces central nervous system abeta levels in a non-human primate, the Caribbean vervet. Am J Pathol 2004; 165: 283–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Matsuoka Y, Saito M, LaFrancois J, Saito M, Gaynor K, Olm V et al. Novel therapeutic approach for the treatment of Alzheimer's disease by peripheral administration of agents with an affinity to beta-amyloid. J Neurosci 2003; 23: 29–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Carro E, Nunez A, Busiguina S, Torres-Aleman I . Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci 2000; 20: 2926–2933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Carro E, Trejo JL, Nunez A, Torres-Aleman I . Brain repair and neuroprotection by serum insulin-like growth factor I. Mol Neurobiol 2003; 27: 153–162.

    Article  CAS  PubMed  Google Scholar 

  180. Arvat E, Broglio F, Ghigo E . Insulin-Like growth factor I: implications in aging. Drugs Aging 2000; 16: 29–40.

    Article  CAS  PubMed  Google Scholar 

  181. Busiguina S, Fernandez AM, Barrios V, Clark R, Tolbert DL, Berciano J et al. Neurodegeneration is associated to changes in serum insulin-like growth factors. Neurobiol Dis 2000; 7: 657–665.

    Article  CAS  PubMed  Google Scholar 

  182. Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I . Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med 2002; 8: 1390–1397.

    Article  CAS  PubMed  Google Scholar 

  183. Carro E, Trejo JL, Spuch C, Bohl D, Heard JM, Torres-Aleman I . Blockade of the insulin-like growth factor I receptor in the choroid plexus originates Alzheimer's-like neuropathology in rodents: new cues into the human disease? Neurobiol Aging 2006; 27: 1618–1631.

    Article  CAS  PubMed  Google Scholar 

  184. Carro E, Trejo JL, Gerber A, Loetscher H, Torrado J, Metzger F et al. Therapeutic actions of insulin-like growth factor I on APP/PS2 mice with severe brain amyloidosis. Neurobiol Aging 2006; 27: 1250–1257.

    Article  CAS  PubMed  Google Scholar 

  185. Qiu WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, Podlisny MB et al. Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem 1998; 273: 32730–32738.

    Article  CAS  PubMed  Google Scholar 

  186. Vekrellis K, Ye Z, Qiu WQ, Walsh D, Hartley D, Chesneau V et al. Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J Neurosci 2000; 20: 1657–1665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Perez A, Morelli L, Cresto JC, Castano EM . Degradation of soluble amyloid beta-peptides 1–40, 1–42, and the Dutch variant 1–40Q by insulin degrading enzyme from Alzheimer disease and control brains. Neurochem Res 2000; 25: 247–255.

    Article  CAS  PubMed  Google Scholar 

  188. Cook DG, Leverenz JB, McMillan PJ, Kulstad JJ, Ericksen S, Roth RA et al. Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer's disease is associated with the apolipoprotein E-epsilon4 allele. Am J Pathol 2003; 162: 313–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kulstad JJ, Green PS, Cook DG, Watson GS, Reger MA, Baker LD et al. Differential modulation of plasma beta-amyloid by insulin in patients with Alzheimer disease. Neurology 2006; 66: 1506–1510.

    Article  CAS  PubMed  Google Scholar 

  190. Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM . Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology 1999; 53: 1937–1942.

    Article  CAS  PubMed  Google Scholar 

  191. Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA . Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol 2004; 61: 661–666.

    Article  PubMed  Google Scholar 

  192. Ertekin-Taner N, Allen M, Fadale D, Scanlin L, Younkin L, Petersen RC et al. Genetic variants in a haplotype block spanning IDE are significantly associated with plasma Abeta42 levels and risk for Alzheimer disease. Hum Mutat 2004; 23: 334–342.

    Article  CAS  PubMed  Google Scholar 

  193. Ling X, Martins RN, Racchi M, Craft S, Helmerhorst E . Amyloid beta antagonizes insulin promoted secretion of the amyloid beta protein precursor. J Alzheimers Dis 2002; 4: 369–374.

    Article  CAS  PubMed  Google Scholar 

  194. Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, Martins R . Alzheimer's beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci 2002; 22: RC221.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease. FASEB J 2004; 18: 902–904.

    Article  CAS  PubMed  Google Scholar 

  196. Zhao L, Teter B, Morihara T, Lim GP, Ambegaokar SS, Ubeda OJ et al. Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer's disease intervention. J Neurosci 2004; 24: 11120–11126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X et al. Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 2003; 40: 1087–1093.

    Article  CAS  PubMed  Google Scholar 

  198. Marr RA, Rockenstein E, Mukherjee A, Kindy MS, Hersh LB, Gage FH et al. Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J Neurosci 2003; 23: 1992–1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Apelt J, Ach K, Schliebs R . Aging-related down-regulation of neprilysin, a putative beta-amyloid-degrading enzyme, in transgenic Tg2576 Alzheimer-like mouse brain is accompanied by an astroglial upregulation in the vicinity of beta-amyloid plaques. Neurosci Lett 2003; 339: 183–186.

    Article  CAS  PubMed  Google Scholar 

  200. Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM et al. Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 2005; 120: 701–713.

    Article  CAS  PubMed  Google Scholar 

  201. Adlard PA, Perreau VM, Pop V, Cotman CW . Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. J Neurosci 2005; 25: 4217–4221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Podewils LJ, Guallar E, Kuller LH, Fried LP, Lopez OL, Carlson M et al. Physical activity, APOE genotype, and dementia risk: Findings from the Cardiovascular Health Cognition Study. Am J Epidemiol 2005; 161: 639–651.

    Article  PubMed  Google Scholar 

  203. Rovio S, Kareholt I, Helkala EL, Viitanen M, Winblad B, Tuomilehto J et al. Leisure-time physical activity at midlife and the risk of dementia and Alzheimer's disease. Lancet Neurol 2005; 4: 705–711.

    Article  PubMed  Google Scholar 

  204. Eckman EA, Eckman CB . Abeta-degrading enzymes: modulators of Alzheimer's disease pathogenesis and targets for therapeutic intervention. Biochem Soc Trans 2005; 33: 1101–1105.

    CAS  PubMed  Google Scholar 

  205. Kosunen O, Soininen H, Paljarvi L, Heinonen O, Talasniemi S, Riekkinen Sr PJ . Diagnostic accuracy of Alzheimer's disease: a neuropathological study. Acta Neuropathol (Berl) 1996; 91: 185–193.

    Article  CAS  Google Scholar 

  206. de la Torre JC . Alzheimer disease as a vascular disorder: nosological evidence. Stroke 2002; 33: 1152–1162.

    Article  CAS  PubMed  Google Scholar 

  207. Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P et al. Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 2001; 21: 2561–2570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Watson GS, Peskind ER, Asthana S, Purganan K, Wait C, Chapman D et al. Insulin increases CSF Abeta42 levels in normal older adults. Neurology 2003; 60: 1899–1903.

    Article  CAS  PubMed  Google Scholar 

  209. Barron AM, Verdile G, Martins RN . The role of gonadotropins in Alzheimer's disease: potential neurodegenerative mechanisms. Endocrine 2006; 29: 257–269.

    Article  CAS  PubMed  Google Scholar 

  210. Misra UK, Gawdi G, Gonzalez-Gronow M, Pizzo SV . Coordinate regulation of the alpha(2)-macroglobulin signaling receptor and the low density lipoprotein receptor-related protein/alpha(2)-macroglobulin receptor by insulin. J Biol Chem 1999; 274: 25785–25791.

    Article  CAS  PubMed  Google Scholar 

  211. Craft S, Asthana S, Cook DG, Baker LD, Cherrier M, Purganan K et al. Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer's disease: interactions with apolipoprotein E genotype. Psychoneuroendocrinology 2003; 28: 809–822.

    Article  CAS  PubMed  Google Scholar 

  212. Craft S, Asthana S, Newcomer JW, Wilkinson CW, Matos IT, Baker LD et al. Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch Gen Psychiatry 1999; 56: 1135–1140.

    Article  CAS  PubMed  Google Scholar 

  213. Craft S, Asthana S, Schellenberg G, Baker L, Cherrier M, Boyt AA et al. Insulin effects on glucose metabolism, memory, and plasma amyloid precursor protein in Alzheimer's disease differ according to apolipoprotein-E genotype. Ann NY Acad Sci 2000; 903: 222–228.

    Article  CAS  PubMed  Google Scholar 

  214. Craft S, Dagogo-Jack SE, Wiethop BV, Murphy C, Nevins RT, Fleischman S et al. Effects of hyperglycemia on memory and hormone levels in dementia of the Alzheimer type: a longitudinal study. Behav Neurosci 1993; 107: 926–940.

    Article  CAS  PubMed  Google Scholar 

  215. Craft S, Newcomer J, Kanne S, Dagogo-Jack S, Cryer P, Sheline Y et al. Memory improvement following induced hyperinsulinemia in Alzheimer's disease. Neurobiol Aging 1996; 17: 123–130.

    Article  CAS  PubMed  Google Scholar 

  216. Watson GS, Craft S . Insulin resistance, inflammation, and cognition in Alzheimer's Disease: lessons for multiple sclerosis. J Neurol Sci 2006; 245: 21–33.

    Article  CAS  PubMed  Google Scholar 

  217. Craft S . Insulin resistance syndrome and Alzheimer's disease: age- and obesity-related effects on memory, amyloid, and inflammation. Neurobiol Aging 2005; 26 (Suppl 1): 65–69.

    Article  PubMed  CAS  Google Scholar 

  218. Fukumoto H, Tennis M, Locascio JJ, Hyman BT, Growdon JH, Irizarry MC . Age but not diagnosis is the main predictor of plasma amyloid beta-protein levels. Arch Neurol 2003; 60: 958–964.

    Article  PubMed  Google Scholar 

  219. Mehta PD, Pirttila T, Mehta SP, Sersen EA, Aisen PS, Wisniewski HM . Plasma and cerebrospinal fluid levels of amyloid beta proteins 1–40 and 1–42 in Alzheimer disease. Arch Neurol 2000; 57: 100–105.

    Article  CAS  PubMed  Google Scholar 

  220. Kosaka T, Imagawa M, Seki K, Arai H, Sasaki H, Tsuji S et al. The beta APP717 Alzheimer mutation increases the percentage of plasma amyloid-beta protein ending at A beta42(43). Neurology 1997; 48: 741–745.

    Article  CAS  PubMed  Google Scholar 

  221. Tamaoka A, Fukushima T, Sawamura N, Ishikawa K, Oguni E, Komatsuzaki Y et al. Amyloid beta protein in plasma from patients with sporadic Alzheimer's disease. J Neurol Sci 1996; 141: 65–68.

    Article  CAS  PubMed  Google Scholar 

  222. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat Med 1996; 2: 864–870.

    Article  CAS  PubMed  Google Scholar 

  223. Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 2003; 60: 1685–1691.

    Article  PubMed  Google Scholar 

  224. Vanderstichele H, Van Kerschaver E, Hesse C, Davidsson P, Buyse MA, Andreasen N et al. Standardization of measurement of beta-amyloid(1–42) in cerebrospinal fluid and plasma. Amyloid 2000; 7: 245–258.

    Article  CAS  PubMed  Google Scholar 

  225. Lannfelt L . Biochemical diagnostic markers to detect early Alzheimer's disease. Neurobiol Aging 1998; 19: 165–167.

    Article  CAS  PubMed  Google Scholar 

  226. Moonis M, Swearer JM, Dayaw MP, St George-Hyslop P, Rogaeva E, Kawarai T et al. Familial Alzheimer disease: decreases in CSF Abeta42 levels precede cognitive decline. Neurology 2005; 65: 323–325.

    Article  CAS  PubMed  Google Scholar 

  227. Jia JP, Meng R, Sun YX, Sun WJ, Ji XM, Jia LF . Cerebrospinal fluid tau, Abeta1–42 and inflammatory cytokines in patients with Alzheimer's disease and vascular dementia. Neurosci Lett 2005; 383: 12–16.

    Article  CAS  PubMed  Google Scholar 

  228. Ibach B, Binder H, Dragon M, Poljansky S, Haen E, Schmitz E et al. Cerebrospinal fluid tau and beta-amyloid in Alzheimer patients, disease controls and an age-matched random sample. Neurobiol Aging 2006; 27: 1202–1211.

    Article  CAS  PubMed  Google Scholar 

  229. Lewczuk P, Esselmann H, Otto M, Maler JM, Henkel AW, Henkel MK et al. Neurochemical diagnosis of Alzheimer's dementia by CSF Abeta42, Abeta42/Abeta40 ratio and total tau. Neurobiol Aging 2004; 25: 273–281.

    Article  CAS  PubMed  Google Scholar 

  230. Andreasen N, Minthon L, Davidsson P, Vanmechelen E, Vanderstichele H, Winblad B et al. Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice. Arch Neurol 2001; 58: 373–379.

    Article  CAS  PubMed  Google Scholar 

  231. Andreasen N, Hesse C, Davidsson P, Minthon L, Wallin A, Winblad B et al. Cerebrospinal fluid beta-amyloid(1–42) in Alzheimer disease: differences between early- and late-onset Alzheimer disease and stability during the course of disease. Arch Neurol 1999; 56: 673–680.

    Article  CAS  PubMed  Google Scholar 

  232. Bouwman FH, Schoonenboom SN, van der Flier WM, van Elk EJ, Kok A, Barkhof F et al. CSF biomarkers and medial temporal lobe atrophy predict dementia in mild cognitive impairment. Neurobiol Aging 2007; 28: 1070–1074.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported through research grant funding from the National Health and Medical Research Council of Australia, the Dementia Collaborative Research Centre, the Australian Biomarkers, Imaging and Lifestyle Flagship study of Ageing and the National Institutes of Health (project ID 52070400). KAB, GV and RNM acknowledge the Centre of Excellence for Alzheimer's Disease Research and Care and The McCusker Foundation for Alzheimer's disease Research for additional support. We also acknowledge editorial assistance from Miss Tamar Berger.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R N Martins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bates, K., Verdile, G., Li, QX. et al. Clearance mechanisms of Alzheimer's amyloid-β peptide: implications for therapeutic design and diagnostic tests. Mol Psychiatry 14, 469–486 (2009). https://doi.org/10.1038/mp.2008.96

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.96

Keywords

This article is cited by

Search

Quick links