Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Amine oxidase activity of β-amyloid precursor protein modulates systemic and local catecholamine levels

Abstract

The catecholamines dopamine (DA), norepinephrine (NE) and epinephrine (E) are neurotransmitters and hormones that mediate stress responses in tissues and plasma. The expression of β-amyloid precursor protein (APP) is responsive to stress and is high in tissues rich in catecholamines. We recently reported that APP is a ferroxidase, subsuming, in neurons and other cells, the iron-export activity that ceruloplasmin mediates in glia. Here we report that, like ceruloplasmin, APP also oxidizes synthetic amines and catecholamines catalytically (Km NE=0.27 mM), through a site encompassing its ferroxidase motif and selectively inhibited by zinc. Accordingly, APP knockout mice have significantly higher levels of DA, NE and E in brain, plasma and select tissues. Consistent with this, these animals have increased resting heart rate and systolic blood pressure as well as suppressed prolactin and lymphocyte levels. These findings support a role for APP in extracellular catecholaminergic clearance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kvetnansky R, Sabban EL, Palkovits M . Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev 2009; 89: 535–606.

    Article  CAS  PubMed  Google Scholar 

  2. Demaria JE, Nagy GM, Lerant AA, Fekete MI, Levenson CW, Freeman ME . Dopamine transporters participate in the physiological regulation of prolactin. Endocrinology 2000; 141: 366–374.

    Article  CAS  PubMed  Google Scholar 

  3. Valet P, Saulnier-Blache JS . Metabolic and trophic role of catecholamines in the development of white adipose tissue]. Ann Endocrinol (Paris) 1999; 60: 167–174.

    CAS  Google Scholar 

  4. Knigge U, Willems E, Kjaer A, Jorgensen H, Warberg J . Histaminergic and catecholaminergic interactions in the central regulation of vasopressin and oxytocin secretion. Endocrinology 1999; 140: 3713–3719.

    Article  CAS  PubMed  Google Scholar 

  5. Breidenbach A, Fuhrmann H, Busche R, Sallmann HP . Studies on equine lipid metabolism. 1. A fluorometric method for the measurement of lipolytic activity in isolated adipocytes of rats and horses. Zentralbl Veterinarmed A 1998; 45: 635–643.

    Article  CAS  PubMed  Google Scholar 

  6. Bergquist J, Tarkowski A, Ewing A, Ekman R . Catecholaminergic suppression of immunocompetent cells. Immunol Today 1998; 19: 562–567.

    Article  CAS  PubMed  Google Scholar 

  7. Clevenger CV, Altmann SW, Prystowsky MB . Requirement of nuclear prolactin for interleukin-2—stimulated proliferation of T lymphocytes. Science 1991; 253: 77–79.

    Article  CAS  PubMed  Google Scholar 

  8. Kobayashi S, Coupland RE . Morphological aspects of chromaffin tissue: the differential fixation of adrenaline and noradrenaline. J Anat 1993; 183 (Part 2): 223–235.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Diarra A, Lefauconnier JM, Valens M, Georges P, Gripois D . Tyrosine content, influx and accumulation rate, and catecholamine biosynthesis measured in vivo, in the central nervous system and in peripheral organs of the young rat. Influence of neonatal hypo- and hyperthyroidism. Arch Int Physiol Biochim 1989; 97: 317–332.

    CAS  PubMed  Google Scholar 

  10. Rochette L, Beley A, Bralet J . Effect of the activation of alpha-adrenoreceptors on the synthesis and release of noradrenaline by peripheral adrenergic nerves in vivo. J Neural Transm 1976; 39: 21–32.

    Article  CAS  PubMed  Google Scholar 

  11. Eisenhofer G, Coughtrie MW, Goldstein DS . Dopamine sulphate: an enigma resolved. Clin Exp Pharmacol Physiol Suppl 1999; 26: S41–S53.

    CAS  PubMed  Google Scholar 

  12. Sakamoto T, Chen C, Lokhandwala MF . Lack of renal dopamine production during acute volume expansion in Dahl salt-sensitive rats. Clin Exp Hypertens 1994; 16: 197–206.

    Article  CAS  PubMed  Google Scholar 

  13. Kagedal B, Goldstein DS . Catecholamines and their metabolites. J Chromatogr 1988; 429: 177–233.

    Article  CAS  PubMed  Google Scholar 

  14. Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G . Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiol Rev 1990; 70: 963–985.

    Article  CAS  PubMed  Google Scholar 

  15. Galli A, Blakely RD, DeFelice LJ . Patch-clamp and amperometric recordings from norepinephrine transporters: channel activity and voltage-dependent uptake. Proc Natl Acad Sci USA 1998; 95: 13260–13265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ford CP, Gantz SC, Phillips PE, Williams JT . Control of extracellular dopamine at dendrite and axon terminals. J Neurosci 2010; 30: 6975–6983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Axelrod J . The metabolism, storage, and release of catecholamines. Recent Prog Horm Res 1965; 21: 597–622.

    CAS  PubMed  Google Scholar 

  18. Fitzpatrick PF . Oxidation of amines by flavoproteins. Arch Biochem Biophys 2010; 493: 13–25.

    Article  CAS  PubMed  Google Scholar 

  19. Patel BN, Dunn RJ, Jeong SY, Zhu Q, Julien JP, David S . Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J Neurosci 2002; 22: 6578–6586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jeong SY, David S . Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem 2003; 278: 27144–27148.

    Article  CAS  PubMed  Google Scholar 

  21. De Domenico I, Ward DM, di Patti MC, Jeong SY, David S, Musci G et al. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J 2007; 26: 2823–2831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schosinsky KH, Lehmann HP, Beeler MF . Measurement of ceruloplasmin from its oxidase activity in serum by use of o-dianisidine dihydrochloride. Clin Chem 1974; 20: 1556–1563.

    CAS  PubMed  Google Scholar 

  23. Osaki S, Johnson DA, Frieden E . The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J Biol Chem 1966; 241: 2746–2751.

    CAS  PubMed  Google Scholar 

  24. Shiva S, Wang X, Ringwood LA, Xu X, Yuditskaya S, Annavajjhala V et al. Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat Chem Biol 2006; 2: 486–493.

    Article  CAS  PubMed  Google Scholar 

  25. Zaitsev VN, Zaitseva I, Papiz M, Lindley PF . An X-ray crystallographic study of the binding sites of the azide inhibitor and organic substrates to ceruloplasmin, a multi-copper oxidase in the plasma. J Biol Inorg Chem 1999; 4: 579–587.

    Article  CAS  PubMed  Google Scholar 

  26. Lovstad RA . Effect of NADH on the ceruloplasmin catalyzed oxidation of dopamine and noradrenaline. Acta Chem Scand 1971; 25: 3144–3150.

    Article  CAS  PubMed  Google Scholar 

  27. Cohen M, Heath RG, Leach BE, Martens S . Studies of the role of ceruloplasmin and albumin in adrenaline metabolism. AMA Arch Neurol Psychiatry 1956; 76: 635–642.

    Article  CAS  PubMed  Google Scholar 

  28. Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K et al. An iron-export ferroxidase activity of beta-amyloid protein precursor is inhibited by zinc in Alzheimer′s Disease. Cell 2010 17 December 2010 142: 857–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bush AI, Martins RN, Rumble B, Moir R, Fuller S, Milward E et al. The amyloid precursor protein of Alzheimer′s disease is released by human platelets. J Biol Chem 1990; 265: 15977–15983.

    CAS  PubMed  Google Scholar 

  30. Zheng H, Jiang M, Trumbauer ME, Sirinathsinghji DJ, Hopkins R, Smith DW et al. beta-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 1995; 81: 525–531.

    Article  CAS  PubMed  Google Scholar 

  31. Henry A, Masters CL, Beyreuther K, Cappai R . Expression of human amyloid precursor protein ectodomains in Pichia pastoris: analysis of culture conditions, purification, and characterization. Protein Exp Purif 1997; 10: 283–291.

    Article  CAS  Google Scholar 

  32. Cappai R, Mok SS, Galatis D, Tucker DF, Henry A, Beyreuther K et al. Recombinant human amyloid precursor-like protein 2 (APLP2) expressed in the yeast Pichia pastoris can stimulate neurite outgrowth. FEBS Lett 1999; 442: 95–98.

    Article  CAS  PubMed  Google Scholar 

  33. Andersen OM, Schmidt V, Spoelgen R, Gliemann J, Behlke J, Galatis D et al. Molecular dissection of the interaction between amyloid precursor protein and its neuronal trafficking receptor SorLA/LR11. Biochemistry 2006; 45: 2618–2628.

    Article  CAS  PubMed  Google Scholar 

  34. Lehmann HP, Schosinsky KH, Beeler MF . Standardization of serum ceruloplasmin concentrations in international enzyme units with o-dianisidine dihydrochloride as substrate. Clin Chem 1974; 20: 1564–1567.

    CAS  PubMed  Google Scholar 

  35. Rice EW . Standardization of ceruloplasmin activity in terms of international enzyme units. Oxidative formation of ‘Bandrowski's base’ from p-phenylenediamine by ceruloplasmin. Anal Biochem 1962; 3: 452–456.

    Article  CAS  PubMed  Google Scholar 

  36. Chen H, Attieh ZK, Su T, Syed BA, Gao H, Alaeddine RM et al. Hephaestin is a ferroxidase that maintains partial activity in sex-linked anemia mice. Blood 2004; 103: 3933–3939.

    Article  CAS  PubMed  Google Scholar 

  37. Furness JB, Heath JW, Costa M . Aqueous aldehyde (Faglu) methods for the fluorescence histochemical localization of catecholamines and for ultrastructural studies of central nervous tissue. Histochemistry 1978; 57: 285–295.

    Article  CAS  PubMed  Google Scholar 

  38. Bielli P, Calabrese L . Structure to function relationships in ceruloplasmin: a ′moonlighting′ protein. Cell Mol Life Sci 2002; 59: 1413–1427.

    Article  CAS  PubMed  Google Scholar 

  39. Richards DA . Use of high-performance liquid chromatography to study the caeruloplasmin-catalysed oxidation of biogenic amines. I. Single substrate systems. J Chromatogr 1983; 256: 71–79.

    Article  CAS  PubMed  Google Scholar 

  40. Tanaka S, Shiojiri S, Takahashi Y, Kitaguchi N, Ito H, Kameyama M et al. Tissue-specific expression of three types of beta-protein precursor mRNA: enhancement of protease inhibitor-harboring types in Alzheimer's disease brain. Biochem Biophys Res Commun 1989; 165: 1406–1414.

    Article  CAS  PubMed  Google Scholar 

  41. Takeda M, Tanaka S, Kido H, Daikoku S, Oka M, Sakai K et al. Chromaffin cells express Alzheimer amyloid precursor protein in the same manner as brain cells. Neurosci Lett 1994; 168: 57–60.

    Article  CAS  PubMed  Google Scholar 

  42. Matera L, Cesano A, Bellone G, Oberholtzer E . Modulatory effect of prolactin on the resting and mitogen-induced activity of T, B, and NK lymphocytes. Brain Behav Immun 1992; 6: 409–417.

    Article  CAS  PubMed  Google Scholar 

  43. Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 1995; 268: 1763–1766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rosa ML, Guimaraes FS, de Oliveira RM, Padovan CM, Pearson RC, Del Bel EA . Restraint stress induces beta-amyloid precursor protein mRNA expression in the rat basolateral amygdala. Brain Res Bull 2005; 65: 69–75.

    Article  CAS  PubMed  Google Scholar 

  45. Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA, Herms J . Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci 2006; 26: 7212–7221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Storey E, Spurck T, Pickett-Heaps J, Beyreuther K, Masters CL . The amyloid precursor protein of Alzheimer′s disease is found on the surface of static but not activity motile portions of neurites. Brain Res 1996; 735: 59–66.

    Article  CAS  PubMed  Google Scholar 

  47. Sensi SL, Paoletti P, Bush AI, Sekler I . Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 2009; 10: 780–791.

    Article  CAS  PubMed  Google Scholar 

  48. Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG . Mitochondrial targeting and a novel transmembrane arrest of Alzheimer′s amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 2003; 161: 41–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sottocasa GL, Kuylenstierna B, Ernster L, Bergstrand A . An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol 1967; 32: 415–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Anderson MC, Hasan F, McCrodden JM, Tipton KF . Monoamine oxidase inhibitors and the cheese effect. Neurochem Res 1993; 18: 1145–1149.

    Article  CAS  PubMed  Google Scholar 

  51. Desir GV . Regulation of blood pressure and cardiovascular function by renalase. Kidney Int 2009; 76: 366–370.

    Article  CAS  PubMed  Google Scholar 

  52. Ben-Jonathan N, LaPensee CR, LaPensee EW . What can we learn from rodents about prolactin in humans? Endocr Rev 2008; 29: 1–41.

    Article  CAS  PubMed  Google Scholar 

  53. Gerardo-Gettens T, Moore BJ, Stern JS, Horwitz BA . Prolactin stimulates food intake in a dose-dependent manner. Am J Physiol 1989; 256 (1 Part 2): R276–R280.

    CAS  PubMed  Google Scholar 

  54. Byatt JC, Staten NR, Salsgiver WJ, Kostelc JG, Collier RJ . Stimulation of food intake and weight gain in mature female rats by bovine prolactin and bovine growth hormone. Am J Physiol 1993; 264 (6 Part 1): E986–E992.

    CAS  PubMed  Google Scholar 

  55. Baptista T, de Baptista EA, Lalonde J, Plamondon J, Kin NM, Beaulieu S et al. Comparative effects of the antipsychotics sulpiride and risperidone in female rats on energy balance, body composition, fat morphology and macronutrient selection. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 1305–1311.

    Article  CAS  PubMed  Google Scholar 

  56. Needham BE, Wlodek ME, Ciccotosto GD, Fam BC, Masters CL, Proietto J et al. Identification of the Alzheimer's disease amyloid precursor protein (APP) and its homologue APLP2 as essential modulators of glucose and insulin homeostasis and growth. J Pathol 2008; 215: 155–163.

    Article  CAS  PubMed  Google Scholar 

  57. Wolfe RR, Shaw JH . Effect of epinephrine infusion and adrenergic blockade on glucose oxidation in conscious dogs. Metabolism 1986; 35: 673–678.

    Article  CAS  PubMed  Google Scholar 

  58. Nilsson L, Binart N, Bohlooly YM, Bramnert M, Egecioglu E, Kindblom J et al. Prolactin and growth hormone regulate adiponectin secretion and receptor expression in adipose tissue. Biochem Biophys Res Commun 2005; 331: 1120–1126.

    Article  CAS  PubMed  Google Scholar 

  59. Shibli-Rahhal A, Schlechte J . The effects of hyperprolactinemia on bone and fat. Pituitary 2009; 12: 96–104.

    Article  CAS  PubMed  Google Scholar 

  60. Yavuz D, Deyneli O, Akpinar I, Yildiz E, Gozu H, Sezgin O et al. Endothelial function, insulin sensitivity and inflammatory markers in hyperprolactinemic pre-menopausal women. Eur J Endocrinol 2003; 149: 187–193.

    Article  CAS  PubMed  Google Scholar 

  61. Clevenger CV, Russell DH, Appasamy PM, Prystowsky MB . Regulation of interleukin 2-driven T-lymphocyte proliferation by prolactin. Proc Natl Acad Sci USA 1990; 87: 6460–6464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Whittle N, Sartori SB, Dierssen M, Lubec G, Singewald N . Fetal Down syndrome brains exhibit aberrant levels of neurotransmitters critical for normal brain development. Pediatrics 2007; 120: e1465–e1471.

    Article  PubMed  Google Scholar 

  63. Fernhall B, Otterstetter M . Attenuated responses to sympathoexcitation in individuals with Down syndrome. J Appl Physiol 2003; 94: 2158–2165.

    Article  PubMed  Google Scholar 

  64. Faizi M, Bader PL, Tun C, Encarnacion A, Kleschevnikov A, Belichenko P et al. Comprehensive behavioral phenotyping of Ts65Dn mouse model of Down Syndrome: Activation of beta(1)-adrenergic receptor by xamoterol as a potential cognitive enhancer. Neurobiol Dis 2011; 43: 397–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Salehi A, Faizi M, Colas D, Valletta J, Laguna J, Takimoto-Kimura R et al. Restoration of norepinephrine-modulated contextual memory in a mouse model of Down syndrome. Sci Transl Med 2009; 1: 7ra17.

    Article  CAS  PubMed  Google Scholar 

  66. Angelopoulou N, Souftas V, Sakadamis A, Matziari C, Papameletiou V, Mandroukas K . Gonadal function in young women with Down syndrome. Int J Gynaecol Obstet 1999; 67: 15–21.

    Article  CAS  PubMed  Google Scholar 

  67. Licastro F, Chiricolo M, Mocchegiani E, Fabris N, Zannoti M, Beltrandi E et al. Oral zinc supplementation in Down's syndrome subjects decreased infections and normalized some humoral and cellular immune parameters. J Intellect Disabil Res 1994; 38 (Part 2): 149–162.

    PubMed  Google Scholar 

  68. Nishino Y, Ando M, Makino R, Ueda K, Okamoto Y, Kojima N . Different mechanisms between copper and iron in catecholamines-mediated oxidative DNA damage and disruption of gene expression in vitro. Neurotox Res 2011; 20: 84–92.

    Article  CAS  PubMed  Google Scholar 

  69. Topham RW, Frieden E . Identification and purification of a non-ceruloplasmin ferroxidase of human serum. J Biol Chem 1970; 245: 6698–6705.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Michael Cater for the generation of FD1(E415N)-APP695 and Keyla Perez for the generation of the FD1 peptide. This work was supported by funds from the Australian Research Council, the Australian National Health & Medical Research Council and the Alzheimer's Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A I Bush.

Ethics declarations

Competing interests

AIB, DIF and KJB are shareholders and paid consultants for Prana Biotechnology. AIB is a shareholder in Brighton Biotech, and paid consultant for Adeona. JAD and AIB have received speaking honoraria from Amgen. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duce, J., Ayton, S., Miller, A. et al. Amine oxidase activity of β-amyloid precursor protein modulates systemic and local catecholamine levels. Mol Psychiatry 18, 245–254 (2013). https://doi.org/10.1038/mp.2011.168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.168

Keywords

This article is cited by

Search

Quick links