Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Striatal morphology as a biomarker in neurodegenerative disease

Abstract

The striatum, comprising the caudate nucleus, putamen and nucleus accumbens, occupies a strategic location within cortico-striato-pallido-thalamic–cortical (corticostriatal) re-entrant neural circuits. Striatal neurodevelopment is precisely determined by phylogenetically conserved homeobox genes. Consisting primarily of medium spiny neurons, the striatum is strictly topographically organized based on cortical afferents and efferents. Particular corticostriatal neural circuits are considered to subserve certain domains of cognition, emotion and behaviour. Thus, the striatum may serve as a map of structural change in the cortical afferent pathways owing to deafferentation or neuroplasticity, and conversely, structural change in the striatum per se may structurally disrupt corticostriatal pathways. The morphology of the striatum may be quantified in vivo using advanced magnetic resonance imaging, as may cognitive functioning pertaining to corticostriatal circuits. It is proposed that striatal morphology may be a biomarker in neurodegenerative disease and potentially the basis of an endophenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Alexander GE, Delong MR, Strick PL . Parallel organisation of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 1986; 9: 357–381.

    Article  CAS  Google Scholar 

  2. Utter AA, Basso MA . The basal ganglia: an overview of circuits and function. Neurosci Biobehav Rev 2008; 32: 333–342.

    Article  Google Scholar 

  3. Haber S . The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 2003; 26: 317–330.

    Article  Google Scholar 

  4. Leh S, Ptito A, Chakravarty M, Strafella A . Fronto-striatal connections in the human brain: a probabilistic diffusion tractography study. Neurosci Lett 2007; 419: 113–118.

    Article  CAS  Google Scholar 

  5. Draganski B, Kherif F, Kloppel S, Cook PA, Alexander DC, Parker GJM et al. Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci 2008; 28: 7143–7152.

    Article  CAS  Google Scholar 

  6. Jain M, Armstrong RJE, Barker RA, Rosser AE . Cellular and molecular aspects of striatal development. Brain Res Bull 2001; 55: 533–540.

    Article  CAS  Google Scholar 

  7. Hamasaki T, Goto S, Nishikawa S, Yukitaka U . Neuronal cell migration for the developmental formation of the mammalian striatum. Brain Res Rev 2003; 41: 1–12.

    Article  Google Scholar 

  8. Smith Y, Bevan MD, Shink E, Bolam JP . Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 1998; 86: 353–387.

    Article  CAS  Google Scholar 

  9. Bolam JP, Hanley JJ, Booth PAC, Bevan MD . Synaptic organisation of the basal ganglia. J Anat 2000; 196: 527–542.

    Article  CAS  Google Scholar 

  10. Cummings JL . Frontal subcortical circuits and human behaviour. Arch Neurol 1993; 5: 873–880.

    Article  Google Scholar 

  11. Koziol LF, Budding DE . Subcortical Structures and Cognition. Springer: New York, NY, USA, 2009.

    Book  Google Scholar 

  12. Looi JCL, Macfarlane MD, Walterfang M, Styner M, Velakoulis D, Latt J et al. Morphometric analysis of subcortical structures in progressive supranuclear palsy: in vivo evidence of neostriatal and mesencephalic atrophy. Psychiatry Res Neuroimaging 2011; 194: 163–175.

    Article  Google Scholar 

  13. Looi JCL, Walterfang M, Styner M, Niethammer M, Svensson LA, Lindberg O et al. Shape analysis of the neostriatum in subtypes of frontotemporal lobar degeneration: Neuroanatomically significant regional morphologic change. Psychiatry Res Neuroimaging 2011; 191: 98–111.

    Article  Google Scholar 

  14. Looi JCL, Walterfang M, Styner M, Svensson L, Lindberg O, Östberg P et al. Shape analysis of the neostriatum in frontotemporal lobar degeneration, Alzheimer's disease, and controls. Neuroimage 2010; 51: 970–986.

    Article  Google Scholar 

  15. Walterfang M, Looi JCL, Styner M, Walker RH, Danek A, Niethammer M et al. Shape alterations in the striatum in chorea-acanthocytosis. Psychiatry Res Neuroimaging 2011; 192: 29–36.

    Article  Google Scholar 

  16. Madsen SK, Ho AJ, Hua X, Saharan PS, Toga AW, Jack Jr CR et al. 3D maps localize caudate nucleus atrophy in 400 Alzheimer's disease, mild cognitive impairment, and healthy elderly subjects. Neurobiol Aging 2010; 31: 1312–1325.

    Article  CAS  Google Scholar 

  17. Mayr E . What Evolution is. Basic Books: New York, NY, USA, 2001, 318pp.

    Google Scholar 

  18. Gottesman II, Gould TD . The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 2003; 160: 636–645.

    Article  Google Scholar 

  19. Biomarkers_Definition_Workgroup. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69: 89–95.

    Article  Google Scholar 

  20. Weiser M, Van Os J, Davidson M . Time for a shift in focus in schizophrenia: from narrow phenotypes to broad endophenotypes. Br J Psychiatry 2005; 187: 203–205.

    Article  Google Scholar 

  21. Looi JCL . Quantitative neostriatal neuroanatomy as a basis of frontostriatal circuit dysfunction in neuropsychiatric disease. Doctor of Medicine thesis, Australian National University, Canberra, 2011.

  22. Kelly Claire M, Dunnett Stephen B, Rosser Anne E . Medium spiny neurons for transplantation in Huntington's disease. Biochem Soc Trans 2009; 37: 323.

    Article  CAS  Google Scholar 

  23. Heimer L, Van Hoesen GW . The limbic lobe and its output channels: implications for emotional function and adaptive behaviour. Neurosci Biobehav Rev 2006; 30: 126–147.

    Article  Google Scholar 

  24. Curtis MA, Faull RLM, Eriksson PS . The effect of neurodegenerative diseases on the subventricular zone. Nat Rev Neurosci 2007; 8: 712–723.

    Article  CAS  Google Scholar 

  25. Curtis MA, Eriksson PS, Faull RLM . Progenitor cells and adult neurogenesis in neurodegenerative diseases and injuries of the basal Ganglia. Clin Exp Pharmacol Physiol 2007; 34: 528–532.

    Article  CAS  Google Scholar 

  26. Mazurova Y, Rudolf E, Latr I, Osterreicher J . Proliferation and differentiation of adult endogenous neural stem cells in response to neurodegenerative process within the striatum. Neurodegenerative Dis 2006; 3: 12–18.

    Article  Google Scholar 

  27. Zaja-Milatovic S, Keene CD, Montine KS, Leverenz JB, Tsuang D, Montine TJ . Selective dendritic degeneration of medium spiny neurons in dementia with Lewy bodies. Neurology 2006; 66: 1591–1593.

    Article  CAS  Google Scholar 

  28. Zaja-Milatovic S, Milatovic D, Schantz AM, Zhang J, Montine KS, Samii A et al. Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease. Neurology 2005; 64: 545–547.

    Article  CAS  Google Scholar 

  29. Stein JL, Hibar DP, Madsen SK, Khamis M, McMahon KL, de Zubicaray GI et al. Discovery and replication of dopamine-related gene effects on caudate volume in young and elderly populations (N=1198) using genome-wide search. Mol Psychiatry 2011; 16: 927–937.

    Article  CAS  Google Scholar 

  30. Haber SN, Fudge JL, McFarland NR . Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 2000; 20: 2369–2382.

    CAS  Google Scholar 

  31. Houk JC, Bastianen C, Fansler D, Fishbach A, Fraser D, Reber PJ et al. Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philos Trans R Soc B Biol Sci 2007; 362: 1573–1583.

    Article  CAS  Google Scholar 

  32. Houk JC . Agents of the mind. Biol Cybern 2005; 92: 427–437.

    Article  Google Scholar 

  33. Tekin S, Cummings JL . Frontal–subcortical neuronal circuits and clinical neuropsychiatry—an update. J Psychosom Res 2002; 53: 647–654.

    Article  Google Scholar 

  34. Buren JMV . Trans-synaptic retrograde degeneration in the visual system of primates. J Neurol Neurosurg Psychiatry 1963; 26: 402–409.

    Article  Google Scholar 

  35. Palop JJ, Mucke L . Synaptic depression and aberrant excitatory network activity in Alzheimer's disease: two faces of the same coin? Neuromolecular Med 2009; 12: 48–55.

    Article  Google Scholar 

  36. Jindahra P, Petrie A, Plant GT . The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. Brain 2012; 135: 534–541.

    Article  Google Scholar 

  37. Douaud G, Gaura V, Ribeiro MJ, Lethimonnier F, Maroy R, Verny C et al. Distribution of grey matter atrophy in Huntington's disease patients: a combined ROI-based and voxel-based morphometric study. Neuroimage 2006; 32: 1562–1575.

    Article  CAS  Google Scholar 

  38. van den Bogaard SJA, Dumas EM, Ferrarini L, Milles J, van Buchem MA, van der Grond J et al. Shape analysis of subcortical nuclei in Huntington's disease, global versus local atrophy—Results from the TRACK-HD study. J Neurol Sci 2011; 307: 60–68.

    Article  CAS  Google Scholar 

  39. Chow TW, Izenberg A, Binns MA, Freedman M, Stuss DT, Scott CJM et al. Magnetic resonance imaging in frontotemporal dementia shows subcortical atrophy. Dement Geriatr Cogn Disord 2008; 26: 79–88.

    Article  Google Scholar 

  40. Garibotto V, Borroni B, Agosti C, Premi E, Alberici A, Eickhoff SB et al. Subcortical and deep cortical atrophy in frontotemporal lobar degeneration. Neurobiol Aging 2011; 32: 875–884.

    Article  Google Scholar 

  41. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD . Neurodegenerative diseases target large-scale human brain networks. Neuron 2009; 62: 42–52.

    Article  CAS  Google Scholar 

  42. De Jong LW, Ferrarini L, Van der Grond J, Milles J, Reiber JHC, Westendorp RGJ et al. Shape abnormalities of the striatum in Alzheimer's disease. J Alzheimer's Dis 2011; 23: 49–59.

    Article  Google Scholar 

  43. de Jong LW, van der Hiele K, Veer IM, Houwing JJ, Westendorp RGJ, Bollen ELEM et al. Strongly reduced volumes of putamen and thalamus in Alzheimer's disease: an MRI study. Brain 2008; 131: 3277–3285.

    Article  CAS  Google Scholar 

  44. Styner M, Oguz I, Xu S, Brechbuhler C, Pantazis D, Levitt JJ et al. Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J 2006; 1–21.

  45. Thompson DW . On Growth and Form: A New Edition. Canbridge University Press: Cambridge, UK, 1945, 1116pp.

    Google Scholar 

  46. Online Mendelian Inheritance in Man. http://omim.org/,(accessed 2011).

  47. Ross CA, Tabrizi SJ . Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 2011; 10: 83–98.

    Article  CAS  Google Scholar 

  48. Aylward E . Caudate volume as an outcome measure in clinical trials for Huntington's disease: a pilot study. Brain Res Bull 2003; 62: 137–141.

    Article  CAS  Google Scholar 

  49. Altered striatal morphology in Huntington's disease, frontotemporal dementia & Alzheimer's disease. Proceedings of the 17th Annual Meeting of the Organization on Human Brain Mapping2011; Quebec City, Quebec, Canada.

  50. Tabrizi SJ, Scahill RI, Durr A, Roos RAC, Leavitt BR, Jones R et al. Biological and clinical changes in premanifest and early stage Huntington's disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol 2011; 10: 31–42.

    Article  Google Scholar 

  51. Walterfang M, Evans A, Looi JCL, Jung HH, Danek A, Walker RH et al. The neuropsychiatry of neuroacanthocytosis syndromes. Neurosci Biobehav Rev 2011; 35: 1275–1283.

    Article  Google Scholar 

  52. Bader B, Arzberger T, Heinsen H, Dobson-Stone C, Kretzschmar H, Danek A . Neuropathology of chorea-acanthocytosis. In: Walker R, Saiki S, Danek A (eds) Neuroacanthocytosis Syndromes II. Springer: Heidelberg, 2008 pp 188–195.

    Google Scholar 

  53. Henkel K, Danek A, Grafman J, Butman J, Kassubek J . Head of the caudate nucleus is most vulnerable in chorea-acanthocytosis: a voxel-based morphometry study. Mov Disord 2006; 21: 1728–1731.

    Article  Google Scholar 

  54. Huppertz H-J, Kröll-Seger J, Danek A, Weber B, Dorn T, Kassubek J . Automatic striatal volumetry allows for identification of patients with chorea-acanthocytosis at single subject level. J Neural Transm 2008; 115: 1393–1400.

    Article  Google Scholar 

  55. Williams DR, Lees AJ . Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol 2009; 8: 270–279.

    Article  Google Scholar 

  56. Rabinovici GD, Seeley WW, Kim EJ, Gorno-Tempini ML, Rascovsky K, Pagliaro TA et al. Distinct MRI atrophy patterns in autopsy-proven Alzheimer's disease and frontotemporal lobar degeneration. Am J Alzheimer's Dis other Demen 2007; 22: 474–478.

    Article  CAS  Google Scholar 

  57. Whitwell JL, Jack JCR, Senjem ML, Parisi JE, Boeve BF, Knopman DS et al. MRI correlates of protein deposition and disease severity in postmortem frontotemporal lobar degeneration. Neurodegenerative Dis 2009; 6: 106–117.

    Article  Google Scholar 

  58. Levitt JJ, Westin C-F, Nestor PJ, Estepar RJ, Dickey CC, Voglmaier MM et al. Shape of caudate nucleus and its cognitive correlates in neuroleptic-naive schizotypal personality disorder. Biol Psychiatry 2004; 55: 177–184.

    Article  Google Scholar 

  59. Levitt JJ, Styner M, Niethammer M, Bouix S, Koo M-S, Voglmaier MM et al. Shape abnormalities of caudate nucleus in schizotypal personality disorder. Schizophr Res 2009; 110: 127–139.

    Article  Google Scholar 

  60. Hwang J, Lyoo IK, Dager SR, Friedman SD, Oh JS, Lee JYK et al. Basal ganglia shape alterations in bipolar disorder. Am J Psychiatry 2006; 163: 276–285.

    Article  Google Scholar 

  61. Choi J, Kim S, Yoo S, Kang D, Kim C, Lee J et al. Shape deformity of the corpus striatum in obsessive–compulsive disorder. Psychiatry Res Neuroimaging 2007; 155: 257–264.

    Article  Google Scholar 

  62. Mamah D, Harms M, Wang L, Barch D, Thompson P, Kim J et al. Basal ganglia shape abnormalities in the unaffected siblings of schizophrenia patients. Biol Psychiatry 2008; 64: 111–120.

    Article  Google Scholar 

  63. Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J et al. Dynamics of gray matter loss in Alzheimer's disease. J Neurosci 2003; 23: 994–1005.

    Article  CAS  Google Scholar 

  64. Braak H, Braak E . Alzheimer's disease, striatal amyloid deposits and neurofibrillary tangles. J Neuropathol Exp Neurol 1990; 49: 215–225.

    Article  CAS  Google Scholar 

  65. Nelissen N, Van Laere K, Thurfjell L, Owenius R, Vandenbulcke M, Koole M et al. Phase 1 study of the Pittsburgh compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J Nucl Med 2009; 50: 1251–1259.

    Article  CAS  Google Scholar 

  66. Villemagne VL, Ataka S, Mizuno T, Brooks WS, Wada Y, Kondo M et al. High striatal amyloid-peptide deposition across different autosomal Alzheimer disease mutation types. Arch Neurol 2009; 66: 1537–1544.

    Article  Google Scholar 

  67. Apostolova LG, Dutton RA, Dinov ID, Hayashi KM, Toga AW, Cummings JL et al. Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Arch Neurol 2006; 63: 693–699.

    Article  Google Scholar 

  68. Aylward E, Mills J, Liu D, Nopoulos P, Ross CA, Pierson R et al. Association between age and striatal volume stratified by CAG repeat length in prodromal huntington disease. PLoS Currents 2011; 3: RRN1235.

    Article  Google Scholar 

  69. Aylward EH . Change in MRI striatal volumes as a biomarker in preclinical Huntington's disease. Brain Res Bull 2007; 72: 152–158.

    Article  CAS  Google Scholar 

  70. Bogaard SJA, Dumas EM, Acharya TP, Johnson H, Langbehn DR, Scahill RI et al. Early atrophy of pallidum and accumbens nucleus in Huntington's disease. J Neurol 2010; 258: 412–420.

    Article  Google Scholar 

  71. Watts DJ . The ‘New’ science of networks. Annu Rev Sociol 2004; 30: 243–270.

    Article  Google Scholar 

  72. Mesulam M . Defining neurocognitive networks in the BOLD new world of computed connectivity. Neuron 2009; 62: 1–3.

    Article  CAS  Google Scholar 

  73. Pievani M, de Haan W, Wu T, Seeley WW, Frisoni GB . Functional network disruption in the degenerative dementias. Lancet Neurol 2011; 10: 829–843.

    Article  Google Scholar 

  74. Braskie MN, Ringman JM, Thompson PM . Neuroimaging measures as endophenotypes in Alzheimer's disease. Int J Alzheimer's Dis 2011; 2011: 1–15.

    Article  Google Scholar 

  75. Hasler G, Northoff G . Discovering imaging endophenotypes for major depression. Mol Psychiatry 2011; 16: 604–619.

    Article  CAS  Google Scholar 

  76. Lunn JS, Sakowski SA, Hur J, Feldman EL . Stem cell technology for neurodegenerative diseases. Ann Neurol 2011; 70: 353–361.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Much of the work cited in this review has been the fruit of international interdisciplinary collaboration with many colleagues, whose contribution to such research formed part of the foundations of the arguments expounded. We thank all the following key collaborators: Phyllis Chua, Olof Lindberg, Matthew D Macfarlane, Sarah K Madsen, Christer Nilsson, Priya Rajagopalan, Martin Styner, Leif Svensson, Paul M Thompson, Danielle van Westen, Dennis Velakoulis, Lars-Olof Wahlund, Bram B Zandbelt (and all co-authors on collaborative papers in this domain). The majority of the collaborative research travel funding has been self-funded by JCLL, who also acknowledges funding/leave contributions from the Canberra Hospital Private Practice Trust Fund, and ACT Health.

Author contributions

JCLL conceived and wrote the first draft of this paper, based mainly upon research projects in collaboration with MW, who conducted many of the shape analyses discussed and co-authored the paper. MD Macfarlane and MW created Figure 1 and JCLL created Figures 2, 3, 4, 5. These figures have previously been used in other papers,12, 21 and are reproduced with permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C L Looi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Looi, J., Walterfang, M. Striatal morphology as a biomarker in neurodegenerative disease. Mol Psychiatry 18, 417–424 (2013). https://doi.org/10.1038/mp.2012.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.54

Keywords

This article is cited by

Search

Quick links