Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

A new paradigm emerges from the study of de novo mutations in the context of neurodevelopmental disease

Abstract

The study of de novo point mutations (new germline mutations arising from the gametes of the parents) remained largely static until the arrival of next-generation sequencing technologies, which made both whole-exome sequencing (WES) and whole-genome sequencing (WGS) feasible in practical terms. Single nucleotide polymorphism genotyping arrays have been used to identify de novo copy-number variants in a number of common neurodevelopmental conditions such as schizophrenia and autism. By contrast, as point mutations and microlesions occurring de novo are refractory to analysis by these microarray-based methods, little was known about either their frequency or impact upon neurodevelopmental disease, until the advent of WES. De novo point mutations have recently been implicated in schizophrenia, autism and mental retardation through the WES of case-parent trios. Taken together, these findings strengthen the hypothesis that the occurrence of de novo mutations could account for the high prevalence of such diseases that are associated with a marked reduction in fecundity. De novo point mutations are also known to be responsible for many sporadic cases of rare dominant Mendelian disorders such as Kabuki syndrome, Schinzel–Giedion syndrome and Bohring–Opitz syndrome. These disorders share a common feature in that they are all characterized by intellectual disability. In summary, recent WES studies of neurodevelopmental and neuropsychiatric disease have provided new insights into the role of de novo mutations in these disorders. Our knowledge of de novo mutations is likely to be further accelerated by WGS. However, the collection of case-parent trios will be a prerequisite for such studies. This review aims to discuss recent developments in the study of de novo mutations made possible by technological advances in DNA sequencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Conrad DF, Keebler JE, DePristo MA, Lindsay SJ, Zhang Y, Casals F et al. Variation in genome-wide mutation rates within and between human families. Nat Genet 2011; 43: 712–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cooper DN, Bacolla A, Ferec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM . On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. Hum Mutat 2011; 32: 1075–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ng PC, Henikoff S . SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 2003; 31: 3812–3814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sunyaev S, Ramensky V, Koch I, Lathe 3rd W, Kondrashov AS, Bork P . Prediction of deleterious human alleles. Hum Mol Genet 2001; 10: 591–597.

    Article  CAS  PubMed  Google Scholar 

  5. Wang K, Li M, Hakonarson H . ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010; 38: e164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Flanagan SE, Patch AM, Ellard S . Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genet Test Mol Biomarkers 2010; 14: 533–537.

    Article  CAS  PubMed  Google Scholar 

  7. Hamdan FF, Daoud H, Rochefort D, Piton A, Gauthier J, Langlois M et al. De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. Am J Hum Genet 2010; 87: 671–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hamdan FF, Gauthier J, Araki Y, Lin DT, Yoshizawa Y, Higashi K et al. Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am J Hum Genet 2011; 88: 306–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T et al. Strong association of de novo copy number mutations with autism. Science 2007; 316: 445–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M . Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 2008; 40: 880–885.

    Article  CAS  PubMed  Google Scholar 

  11. Roach JC, Glusman G, Smit AF, Huff CD, Hubley R, Shannon PT et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 2010; 328: 636–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vissers LE, de Ligt J, Gilissen C, Janssen I, Steehouwer M, de Vries P et al. A de novo paradigm for mental retardation. Nat Genet 2010; 42: 1109–1112.

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Zheng H, Luo R, Wu H, Zhu H, Li R et al. Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly. Nat Biotechnol 2011; 29: 723–730.

    Article  CAS  PubMed  Google Scholar 

  14. Paszkiewicz K, Studholme DJ . De novo assembly of short sequence reads. Brief Bioinform 2010; 11: 457–472.

    Article  CAS  PubMed  Google Scholar 

  15. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20: 265–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Y, Hu Y, Bolund L, Wang J . State of the art de novo assembly of human genomes from massively parallel sequencing data. Hum Genomics 2010; 4: 271–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O'Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 2011; 43: 585–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet 2011; 43: 864–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 2011; 43: 860–863.

    Article  CAS  PubMed  Google Scholar 

  20. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 2010; 42: 790–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoischen A, van Bon BW, Gilissen C, Arts P, van Lier B, Steehouwer M et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet 2010; 42: 483–485.

    Article  CAS  PubMed  Google Scholar 

  22. Hoischen A, van Bon BW, Rodriguez-Santiago B, Gilissen C, Vissers LE, de Vries P et al. De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat Genet 2011; 43: 729–731.

    Article  CAS  PubMed  Google Scholar 

  23. Carter NP . Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet 2007; 39 (7 Suppl): S16–S21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ragoussis J . Genotyping technologies for genetic research. Annu Rev Genomics Hum Genet 2009; 10: 117–133.

    Article  CAS  PubMed  Google Scholar 

  25. Girirajan S, Campbell CD, Eichler EE . Human copy number variation and complex genetic disease. Annu Rev Genet 2011; 45: 203–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ku CS, Loy EY, Pawitan Y, Chia KS . The pursuit of genome-wide association studies: where are we now? J Hum Genet 2010; 55: 195–206.

    Article  CAS  PubMed  Google Scholar 

  27. Peiffer DA, Le JM, Steemers FJ, Chang W, Jenniges T, Garcia F et al. High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res 2006; 16: 1136–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 2007; 17: 1665–1674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P et al. Large-scale copy number polymorphism in the human genome. Science 2004; 305: 525–528.

    Article  CAS  PubMed  Google Scholar 

  30. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y et al. Detection of large-scale variation in the human genome. Nat Genet 2004; 36: 949–951.

    Article  CAS  PubMed  Google Scholar 

  31. Freeman JL, Perry GH, Feuk L, Redon R, McCarroll SA, Altshuler DM et al. Copy number variation: new insights in genome diversity. Genome Res 2006; 16: 949–961.

    Article  CAS  PubMed  Google Scholar 

  32. Craddock N, Hurles ME, Cardin N, Pearson RD, Plagnol V, Robson S et al. Genome-wide association study of CNVs in 16 000 cases of eight common diseases and 3000 shared controls. Nature 2010; 464: 713–720.

    Article  CAS  PubMed  Google Scholar 

  33. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 2009; 459: 569–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  PubMed  Google Scholar 

  35. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237–241.

    Article  CAS  Google Scholar 

  36. Mulle JG, Dodd AF, McGrath JA, Wolyniec PS, Mitchell AA, Shetty AC et al. Microdeletions of 3q29 confer high risk for schizophrenia. Am J Hum Genet 2010; 87: 229–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vissers LE, de Vries BB, Veltman JA . Genomic microarrays in mental retardation: from copy number variation to gene, from research to diagnosis. J Med Genet 2010; 47: 289–297.

    Article  CAS  PubMed  Google Scholar 

  38. Priebe L, Degenhardt FA, Herms S, Haenisch B, Mattheisen M, Nieratschker V et al. Genome-wide survey implicates the influence of copy number variants (CNVs) in the development of early-onset bipolar disorder. Mol Psychiatry 2011; 17: 421–432.

    Article  CAS  PubMed  Google Scholar 

  39. Shendure J, Ji H . Next-generation DNA sequencing. Nat Biotechnol 2008; 26: 1135–1145.

    Article  CAS  PubMed  Google Scholar 

  40. Metzker ML . Sequencing technologies - the next generation. Nat Rev Genet 2010; 11: 31–46.

    Article  CAS  PubMed  Google Scholar 

  41. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 2009; 461: 272–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008; 456: 53–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang J, Wang W, Li R, Li Y, Tian G, Goodman L et al. The diploid genome sequence of an Asian individual. Nature 2008; 456: 60–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Clark MJ, Chen R, Lam HY, Karczewski KJ, Euskirchen G, Butte AJ et al. Performance comparison of exome DNA sequencing technologies. Nat Biotechnol 2011; 29: 908–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Parla JS, Iossifov I, Grabill I, Spector MS, Kramer M, McCombie WR . A comparative analysis of exome capture. Genome Biol 2011; 12: R97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sulonen AM, Ellonen P, Almusa H, Lepisto M, Eldfors S, Hannula S et al. Comparison of solution-based exome capture methods for next generation sequencing. Genome Biol 2011; 12: R94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Asan, Xu Y, Jiang H, Tyler-Smith C, Xue Y, Jiang T et al. Comprehensive comparison of three commercial human whole-exome capture platforms. Genome Biol 2011; 12: R95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schadt EE, Turner S, Kasarskis A . A window into third-generation sequencing. Hum Mol Genet 2010; 19 (R2): R227–R240.

    Article  CAS  PubMed  Google Scholar 

  49. Lynch M . Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci USA 2010; 107: 961–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Itsara A, Wu H, Smith JD, Nickerson DA, Romieu I, London SJ et al. De novo rates and selection of large copy number variation. Genome Res 2010; 20: 1469–1481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 2010; 467: 1061–1073.

    Article  CAS  Google Scholar 

  52. Matijevic T, Knezevic J, Slavica M, Pavelic J . Rett syndrome: from the gene to the disease. Eur Neurol 2009; 61: 3–10.

    Article  CAS  PubMed  Google Scholar 

  53. Zoghbi HY, Ledbetter DH, Schultz R, Percy AK, Glaze DG . A de novo X;3 translocation in Rett syndrome. Am J Med Genet 1990; 35: 148–151.

    Article  CAS  PubMed  Google Scholar 

  54. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY . Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999; 23: 185–188.

    Article  CAS  PubMed  Google Scholar 

  55. Wan M, Lee SS, Zhang X, Houwink-Manville I, Song HR, Amir RE et al. Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am J Hum Genet 1999; 65: 1520–1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dragich J, Houwink-Manville I, Schanen C . Rett syndrome: a surprising result of mutation in MECP2. Hum Mol Genet 2000; 9: 2365–2375.

    Article  CAS  PubMed  Google Scholar 

  57. Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 2012; 17: 142–153.

    Article  CAS  PubMed  Google Scholar 

  58. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 2010; 466: 368–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Levy D, Ronemus M, Yamrom B, Lee YH, Leotta A, Kendall J et al. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron 2011; 70: 886–897.

    Article  CAS  PubMed  Google Scholar 

  60. Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 2011; 70: 863–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Berkel S, Marshall CR, Weiss B, Howe J, Roeth R, Moog U et al. Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat Genet 2010; 42: 489–491.

    Article  CAS  PubMed  Google Scholar 

  62. McMullan DJ, Bonin M, Hehir-Kwa JY, de Vries BB, Dufke A, Rattenberry E et al. Molecular karyotyping of patients with unexplained mental retardation by SNP arrays: a multicenter study. Hum Mutat 2009; 30: 1082–1092.

    Article  CAS  PubMed  Google Scholar 

  63. Cook Jr EH, Scherer SW . Copy-number variations associated with neuropsychiatric conditions. Nature 2008; 455: 919–923.

    Article  CAS  PubMed  Google Scholar 

  64. Kakinuma H, Sato H . Copy-number variations associated with autism spectrum disorder. Pharmacogenomics 2008; 9: 1143–1154.

    Article  CAS  PubMed  Google Scholar 

  65. Tam GW, Redon R, Carter NP, Grant SG . The role of DNA copy number variation in schizophrenia. Biol Psychiatry 2009; 66: 1005–1012.

    Article  CAS  PubMed  Google Scholar 

  66. Merikangas AK, Corvin AP, Gallagher L . Copy-number variants in neurodevelopmental disorders: promises and challenges. Trends Genet 2009; 25: 536–544.

    Article  CAS  PubMed  Google Scholar 

  67. Endele S, Rosenberger G, Geider K, Popp B, Tamer C, Stefanova I et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet 2010; 42: 1021–1026.

    Article  CAS  PubMed  Google Scholar 

  68. Horn D, Kapeller J, Rivera-Brugues N, Moog U, Lorenz-Depiereux B, Eck S et al. Identification of FOXP1 deletions in three unrelated patients with mental retardation and significant speech and language deficits. Hum Mutat 2010; 31: E1851–E1860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sundaram SK, Huq AM, Wilson BJ, Chugani HT . Tourette syndrome is associated with recurrent exonic copy number variants. Neurology 2010; 74: 1583–1590.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Giannandrea M, Bianchi V, Mignogna ML, Sirri A, Carrabino S, D'Elia E et al. Mutations in the small GTPase gene RAB39B are responsible for X-linked mental retardation associated with autism, epilepsy, and macrocephaly. Am J Hum Genet 2010; 86: 185–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hamdan FF, Gauthier J, Spiegelman D, Noreau A, Yang Y, Pellerin S et al. Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation. N Engl J Med 2009; 360: 599–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gauthier J, Champagne N, Lafreniere RG, Xiong L, Spiegelman D, Brustein E et al. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci USA 2010; 107: 7863–7868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tarabeux J, Champagne N, Brustein E, Hamdan FF, Gauthier J, Lapointe M et al. De novo truncating mutation in Kinesin 17 associated with schizophrenia. Biol Psychiatry 2010; 68: 649–656.

    Article  CAS  PubMed  Google Scholar 

  74. Hamdan FF, Piton A, Gauthier J, Lortie A, Dubeau F, Dobrzeniecka S et al. De novo STXBP1 mutations in mental retardation and nonsyndromic epilepsy. Ann Neurol 2009; 65: 748–753.

    Article  CAS  PubMed  Google Scholar 

  75. Deprez L, Weckhuysen S, Holmgren P, Suls A, Van Dyck T, Goossens D et al. Clinical spectrum of early-onset epileptic encephalopathies associated with STXBP1 mutations. Neurology 2010; 75: 1159–1165.

    Article  CAS  PubMed  Google Scholar 

  76. Hannibal MC, Buckingham KJ, Ng SB, Ming JE, Beck AE, McMillin MJ et al. Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome. Am J Med Genet A 2011; 155A: 1511–1516.

    Article  CAS  PubMed  Google Scholar 

  77. Li Y, Bogershausen N, Alanay Y, Simsek Kiper PO, Plume N, Keupp K et al. A mutation screen in patients with Kabuki syndrome. Hum Genet 2011; 130: 715–724.

    Article  CAS  PubMed  Google Scholar 

  78. Paulussen AD, Stegmann AP, Blok MJ, Tserpelis D, Posma-Velter C, Detisch Y et al. MLL2 mutation spectrum in 45 patients with Kabuki syndrome. Hum Mutat 2011; 32: E2018–E2025.

    Article  CAS  PubMed  Google Scholar 

  79. Clayton-Smith J, O'Sullivan J, Daly S, Bhaskar S, Day R, Anderson B et al. Whole-exome-sequencing identifies mutations in histone acetyltransferase gene KAT6B in individuals with the Say-Barber-Biesecker variant of Ohdo syndrome. Am J Hum Genet 2011; 89: 675–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bochukova E, Schoenmakers N, Agostini M, Schoenmakers E, Rajanayagam O, Keogh JM et al. A mutation in the thyroid hormone receptor alpha gene. N Engl J Med 2012; 366: 243–249.

    Article  CAS  PubMed  Google Scholar 

  81. Simpson MA, Deshpande C, Dafou D, Vissers LE, Woollard WJ, Holder SE et al. De novo mutations of the gene encoding the histone acetyltransferase KAT6B cause Genitopatellar syndrome. Am J Hum Genet 2012; 90: 290–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Campeau PM, Kim JC, Lu JT, Schwartzentruber JA, Abdul-Rahman OA, Schlaubitz S et al. Mutations in KAT6B, encoding a histone acetyltransferase, cause Genitopatellar syndrome. Am J Hum Genet 2012; 90: 282–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sirmaci A, Spiliopoulos M, Brancati F, Powell E, Duman D, Abrams A et al. Mutations in ANKRD11 cause KBG syndrome, characterized by intellectual disability, skeletal malformations, and macrodontia. Am J Hum Genet 2011; 89: 289–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gibson WT, Hood RL, Zhan SH, Bulman DE, Fejes AP, Moore R et al. Mutations in EZH2 cause weaver syndrome. Am J Hum Genet 2012; 90: 110–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hood RL, Lines MA, Nikkel SM, Schwartzentruber J, Beaulieu C, Nowaczyk MJ et al. Mutations in SRCAP, encoding SNF2-related CREBBP activator protein, cause floating-harbor syndrome. Am J Hum Genet 2012; 90: 308–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N, Soto-Ortolaza A et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet 2012; 44: 200–205.

    Article  CAS  Google Scholar 

  87. Santen GW, Aten E, Sun Y, Almomani R, Gilissen C, Nielsen M et al. Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome. Nat Genet 2012; 44: 379–380.

    Article  CAS  PubMed  Google Scholar 

  88. Tsurusaki Y, Okamoto N, Ohashi H, Kosho T, Imai Y, Hibi-Ko Y et al. Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nat Genet 2012; 44: 376–378.

    Article  CAS  PubMed  Google Scholar 

  89. Lin Z, Chen Q, Lee M, Cao X, Zhang J, Ma D et al. Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am J Hum Genet 2012; 90: 558–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Riviere JB, van Bon BW, Hoischen A, Kholmanskikh SS, O'Roak BJ, Gilissen C et al. De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nat Genet 2012; 44: 440–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Winkelmann J, Lin L, Schormair B, Kornum BR, Faraco J, Plazzi G et al. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet 2012; 21: 2205–2210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lines MA, Huang L, Schwartzentruber J, Douglas SL, Lynch DC, Beaulieu C et al. Haploinsufficiency of a spliceosomal GTPase encoded by EFTUD2 causes mandibulofacial dysostosis with microcephaly. Am J Hum Genet 2012; 90: 369–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Caputo V, Cianetti L, Niceta M, Carta C, Ciolfi A, Bocchinfuso G et al. A restricted spectrum of mutations in the SMAD4 tumor-suppressor gene underlies Myhre syndrome. Am J Hum Genet 2012; 90: 161–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cooper DN, Chen JM, Ball EV, Howells K, Mort M, Phillips AD et al. Genes, mutations, and human inherited disease at the dawn of the age of personalized genomics. Hum Mutat 2010; 31: 631–655.

    Article  CAS  PubMed  Google Scholar 

  95. Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008; 455: 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kong A, Steinthorsdottir V, Masson G, Thorleifsson G, Sulem P, Besenbacher S et al. Parental origin of sequence variants associated with complex diseases. Nature 2009; 462: 868–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sathirapongsasuti JF, Lee H, Horst BA, Brunner G, Cochran AJ, Binder S et al. Exome sequencing-based copy-number variation and loss of heterozygosity detection: exomeCNV. Bioinformatics 2011; 27: 2648–2654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Medvedev P, Stanciu M, Brudno M . Computational methods for discovering structural variation with next-generation sequencing. Nat Methods 2009; 6 (11 Suppl): S13–S20.

    Article  CAS  PubMed  Google Scholar 

  99. Medvedev P, Fiume M, Dzamba M, Smith T, Brudno M . Detecting copy number variation with mated short reads. Genome Res 2010; 20: 1613–1622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Carroll LS, Owen MJ . Genetic overlap between autism, schizophrenia and bipolar disorder. Genome Med 2009; 1: 102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fernandez BA, Roberts W, Chung B, Weksberg R, Meyn S, Szatmari P et al. Phenotypic spectrum associated with de novo and inherited deletions and duplications at 16p11.2 in individuals ascertained for diagnosis of autism spectrum disorder. J Med Genet 2010; 47: 195–203.

    Article  PubMed  Google Scholar 

  102. Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 2010; 68: 857–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Guerreiro RJ, Lohmann E, Kinsella E, Bras JM, Luu N, Gurunlian N et al. Exome sequencing reveals an unexpected genetic cause of disease: NOTCH3 mutation in a Turkish family with Alzheimer's disease. Neurobiol Aging 2012; 33: 1008.e17–1008.e23.

    Article  CAS  Google Scholar 

  104. Greenway SC, Pereira AC, Lin JC, DePalma SR, Israel SJ, Mesquita SM et al. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet 2009; 41: 931–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA 2009; 106: 19096–19101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Worthey EA, Mayer AN, Syverson GD, Helbling D, Bonacci BB, Decker B et al. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med 2011; 13: 255–262.

    Article  PubMed  Google Scholar 

  107. Montenegro G, Powell E, Huang J, Speziani F, Edwards YJ, Beecham G et al. Exome sequencing allows for rapid gene identification in a Charcot-Marie-Tooth family. Ann Neurol 2011; 69: 464–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Edelmann L, Hirschhorn K . Clinical utility of array CGH for the detection of chromosomal imbalances associated with mental retardation and multiple congenital anomalies. Ann N Y Acad Sci 2009; 1151: 157–166.

    Article  PubMed  Google Scholar 

  109. Poot M, Hochstenbach R . A three-step workflow procedure for the interpretation of array-based comparative genome hybridization results in patients with idiopathic mental retardation and congenital anomalies. Genet Med 2010; 12: 478–485.

    Article  CAS  PubMed  Google Scholar 

  110. Schaaf CP, Wiszniewska J, Beaudet AL . Copy number and SNP arrays in clinical diagnostics. Annu Rev Genomics Hum Genet 2011; 12: 25–51.

    Article  CAS  PubMed  Google Scholar 

  111. Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE, Sabo A et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012; 485: 242–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012; 485: 237–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012; 485: 246–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Touati Benoukraf and Mengchu Wu (Cancer Science Institute of Singapore) for discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C S Ku or D N Cooper.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ku, C., Polychronakos, C., Tan, E. et al. A new paradigm emerges from the study of de novo mutations in the context of neurodevelopmental disease. Mol Psychiatry 18, 141–153 (2013). https://doi.org/10.1038/mp.2012.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.58

Keywords

Search

Quick links