Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A physical map of the mouse genome

Abstract

A physical map of a genome is an essential guide for navigation, allowing the location of any gene or other landmark in the chromosomal DNA. We have constructed a physical map of the mouse genome that contains 296 contigs of overlapping bacterial clones and 16,992 unique markers. The mouse contigs were aligned to the human genome sequence on the basis of 51,486 homology matches, thus enabling use of the conserved synteny (correspondence between chromosome blocks) of the two genomes to accelerate construction of the mouse map. The map provides a framework for assembly of whole-genome shotgun sequence data, and a tile path of clones for generation of the reference sequence. Definition of the human–mouse alignment at this level of resolution enables identification of a mouse clone that corresponds to almost any position in the human genome. The human sequence may be used to facilitate construction of other mammalian genome maps using the same strategy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Construction of human–mouse homology clone map.
Figure 2: Comparison of radiation hybrid and genetic maps to the physical map of mouse chromosome 2.
Figure 3: Conserved segments between human chromosome 6 (Hsa6) and the mouse genome.
Figure 4: Conserved segments between mouse chromosome 11 and the human genome.
Figure 5: Homology maps of the mouse and human genomes.

Similar content being viewed by others

References

  1. Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995)

    Article  CAS  PubMed  Google Scholar 

  2. Churcher, C. et al. The nucleotide sequence of Saccharomyces cerevisiae chromosome IX. Nature 387, 84–87 (1997)

    CAS  PubMed  Google Scholar 

  3. The yeast genome directory. Nature 387 (suppl.), 5 (1997)

  4. The C. elegans Sequencing Consortium Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998)

    Article  Google Scholar 

  5. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000)

    Article  PubMed  Google Scholar 

  6. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)

    Article  CAS  PubMed  Google Scholar 

  7. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Collins, J. & Hohn, B. Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage lambda heads. Proc. Natl Acad. Sci. USA 75, 4242–4246 (1978)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shizuya, H. et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl Acad. Sci. USA 89, 8794–8797 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coulson, A., Sulston, J., Brenner, S. & Karn, J. Towards a physical map of the genome of the nematode Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 83, 7821–7825 (1986)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Olson, M. V. et al. Random-clone strategy for genomic restriction mapping in yeast. Proc. Natl Acad. Sci. USA 83, 7826–7830 (1986)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bentley, D. R. et al. The physical maps for sequencing human chromosomes 1, 6, 9, 10, 13, 20 and X. Nature 409, 942–943 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. McPherson, J. D. et al. A physical map of the human genome. Nature 409, 934–941 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Green, E. D. Strategies for the systematic sequencing of complex genomes. Nature Rev. Genet. 2, 573–583 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Dunham, I. et al. The DNA sequence of human chromosome 22. Nature 402, 489–495 (1999)

    Article  CAS  PubMed  Google Scholar 

  16. Waterston, R. & Sulston, J. E. The Human Genome Project: reaching the finish line. Science 282, 53–54 (1998)

    Article  CAS  PubMed  Google Scholar 

  17. Nadeau, J. H. & Taylor, B. A. Lengths of chromosomal segments conserved since divergence of man and mouse. Proc. Natl Acad. Sci. USA 81, 814–818 (1984)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. DeBry, R. W. & Seldin, M. F. Human/mouse homology relationships. Genomics 33, 337–351 (1996)

    Article  CAS  PubMed  Google Scholar 

  19. Nadeau, J. H. & Sankoff, D. Counting on comparative maps. Trends Genet. 14, 495–501 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. Thomas, J. W. et al. Comparative genome mapping in the sequence-based era: early experience with human chromosome 7. Genome Res. 10, 624–633 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, J. et al. Homology-driven assembly of a sequence-ready mouse BAC contig map spanning regions related to the 46-Mb gene-rich euchromatic segments of human chromosome 19. Genomics 74, 129–141 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Osoegawa, K. et al. Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res. 10, 116–128 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hardison, R. C., Oeltjen, J. & Miller, W. Long human–mouse sequence alignments reveal novel regulatory elements: a reason to sequence the mouse genome. Genome Res. 7, 959–966 (1997)

    Article  CAS  PubMed  Google Scholar 

  24. Koop, B. F. et al. The human T-cell receptor TCRAC/TCRDC (Cα/Cδ) region: organization, sequence, and evolution of 97.6 kb of DNA. Genomics 19, 478–493 (1994)

    Article  CAS  PubMed  Google Scholar 

  25. Ashworth, L. K. et al. An integrated metric physical map of human chromosome 19. Nature Genet. 11, 422–427 (1995)

    Article  CAS  PubMed  Google Scholar 

  26. Kent, W. J. The BLAST-like alignment tool. Genome Res. 12, 656–664 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Copeland, N. G. et al. A genetic linkage map of the mouse: current applications and future prospects. Science 262, 57–66 (1993)

    Article  CAS  PubMed  Google Scholar 

  28. Dietrich, W. F. et al. A comprehensive genetic map of the mouse genome. Nature 380, 149–152 (1996)

    Article  CAS  PubMed  Google Scholar 

  29. Cai, W. W. et al. An SSLP marker-anchored BAC framework map of the mouse genome. Nature Genet. 29, 133–134 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. Hudson, T. J. et al. A radiation hybrid map of mouse genes. Nature Genet. 29, 201–205 (2001)

    Article  CAS  PubMed  Google Scholar 

  31. Schuler, G. D. Sequence mapping by electronic PCR. Genome Res. 7, 541–550 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Article  CAS  PubMed  Google Scholar 

  33. Ross, M. T., LaBrie, S., McPherson, J. P. & Stanton, V. P. in Current Protocols in Human Genetics (eds Dracopoli, N. C. et al.) 5.6.1–5.6.5 (Wiley, New York, 1999)

    Google Scholar 

  34. Puttagunta, R. et al. Comparative maps of human 19p13.3 and mouse chromosome 10 allow identification of sequences at evolutionary breakpoints. Genome Res. 10, 1369–1380 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carver, E. A. & Stubbs, L. Zooming in on the human–mouse comparative map: genome conservation re-examined on a high-resolution scale. Genome Res. 7, 1123–1137 (1997)

    Article  CAS  PubMed  Google Scholar 

  36. Watkins-Chow, D. E. et al. Genetic mapping of 21 genes on mouse chromosome 11 reveals disruptions in linkage conservation with human chromosome 5. Genomics 40, 114–122 (1997)

    Article  CAS  PubMed  Google Scholar 

  37. Stubbs, L. et al. Detailed comparative map of human chromosome 19q and related regions of the mouse genome. Genomics 35, 499–508 (1996)

    Article  CAS  PubMed  Google Scholar 

  38. Dehal, P. et al. Human chromosome 19 and related regions in mouse: conservative and lineage-specific evolution. Science 293, 104–111 (2001)

    Article  CAS  PubMed  Google Scholar 

  39. Pletcher, M. T., Wiltshire, T., Cabin, D. E., Villanueva, M. & Reeves, R. H. Use of comparative physical and sequence mapping to annotate mouse chromosome 16 and human chromosome 21. Genomics 74, 45–54 (2001)

    Article  CAS  PubMed  Google Scholar 

  40. Oeltjen, J. C. et al. Large-scale comparative sequence analysis of the human and murine Bruton's tyrosine kinase loci reveals conserved regulatory domains. Genome Res. 7, 315–329 (1997)

    Article  CAS  PubMed  Google Scholar 

  41. Batzoglou, S., Pachter, L., Mesirov, J. P., Berger, B. & Lander, E. S. Human and mouse gene structure: comparative analysis and application to exon prediction. Genome Res. 10, 950–958 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Marra, M. A. et al. High throughput fingerprint analysis of large-insert clones. Genome Res. 7, 1072–1084 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Soderlund, C., Humphray, S., Dunham, A. & French, L. Contigs built with fingerprints, markers, and FPC V4. 7. Genome Res. 10, 1772–1787 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao, S. et al. Mouse BAC ends quality assessment and sequence analyses. Genome Res. 11, 1736–1745 (2001)

    Article  PubMed  PubMed Central  Google Scholar 

  45. Altschul, S. F. & Gish, W. Local alignment statistics. Methods Enzymol. 266, 460–480 (1996)

    Article  CAS  PubMed  Google Scholar 

  46. Nusbaum, C. et al. A YAC-based physical map of the mouse genome. Nature Genet. 22, 388–393 (1999)

    Article  CAS  PubMed  Google Scholar 

  47. Evans, E. P. in Genetic Variants of the Laboratory Mouse (eds Lyon, M. F., Rastan, S. & Brown, S. D. M.) 1446 (Oxford Univ. Press, New York, 1996)

    Google Scholar 

  48. Pletcher, M. T. et al. Chromosome evolution: the junction of mammalian chromosomes in the formation of mouse chromosome 10. Genome Res. 10, 1463–1467 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martindale, D. W. et al. Comparative genomic sequence analysis of the Williams syndrome region (LIMK1-RFC2) of human chromosome 7q11.23. Mamm. Genome 11, 890–898 (2000)

    Article  CAS  PubMed  Google Scholar 

  50. DeSilva, U. et al. Generation and comparative analysis of approximately 3.3 Mb of mouse genomic sequence orthologous to the region of human chromosome 7q11.23 implicated in Williams syndrome. Genome Res. 12, 3–15 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Wellcome Trust, the National Institutes of Health and the US Department of Energy. We are grateful to the web team at the Sanger Institute for assistance with developing map displays, to P. Deloukas for RH map analysis, and E. Arnold-Berkowits, S. Lo, J. Gill and all present and past members of the Institute for Genomic Research BAC end sequencing team for the sequencing work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Bentley.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

41586_2002_BFnature00957_MOESM1_ESM.zip

This file contains a static version of the mouse fingerprint contig (FPC) map; it is an archive representation of the data at the time of publication. (Start with the file bac.1.0.html). A live, updated version of this data can be seen in CytoView at Ensembl (choose 'MapViewer'), and also at the NCBI (use the 'Jump to chr' box to select chromosome; if searching specific features, select 'cytoview' option to view the map). The FPC map was previous displayed in Ensembl before the availability of sequence covering most of the genome. Since then, Ensembl displays have switched to being sequence based, with the FPC data mapped onto it and visible through the CytoView interface. Both the sequence and the FPC map are being refined as the mouse genome is finished. (ZIP 3564 kb)

This file contains a static version of the map derived from the synteny between the mouse and human genomes (Fig. 5); it is an archive representation of the data at the time of publication. (Start with the file hm.1.1.html). A live, updated version of this data can be seen in SyntenyView at Ensembl.

Copies of these data, plus comparisons and discussion of genetic, RH and clone maps, and an interactive version of the synteny displays of Fig. 5, are available at the Wellcome Trust Sanger Institute. (ZIP 1541 kb)

Updated views of the map are available from the authors' websites (http://www.ensembl.org/Mus_musculus/cytoview and http://www.ncbi.nlm.nih.gov/genome/guide/mouse), as is an archive version for this publication, plus comparisons and discussion of genetic, RH and clone maps, and an interactive version of the synteny displays of Fig. 5 (http://www.sanger.ac.uk/Projects/M_musculus/publications/fpcmap-2002).

PDF version of Figure 5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregory, S., Sekhon, M., Schein, J. et al. A physical map of the mouse genome. Nature 418, 743–750 (2002). https://doi.org/10.1038/nature00957

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00957

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing