Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds

Abstract

Gravitational lensing is a powerful tool for the study of the distribution of dark matter in the Universe. The cold-dark-matter model of the formation of large-scale structures (that is, clusters of galaxies and even larger assemblies) predicts1,2,3,4,5,6 the existence of quasars gravitationally lensed by concentrations of dark matter7 so massive that the quasar images would be split by over 7 arcsec. Numerous searches8,9,10,11 for large-separation lensed quasars have, however, been unsuccessful. All of the roughly 70 lensed quasars known12, including the first lensed quasar discovered13, have smaller separations that can be explained in terms of galaxy-scale concentrations of baryonic matter. Although gravitationally lensed galaxies14 with large separations are known, quasars are more useful cosmological probes because of the simplicity of the resulting lens systems. Here we report the discovery of a lensed quasar, SDSS J1004 + 4112, which has a maximum separation between the components of 14.62 arcsec. Such a large separation means that the lensing object must be dominated by dark matter. Our results are fully consistent with theoretical expectations3,4,5 based on the cold-dark-matter model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Keck spectra of the four quasar components A–D, and the brightest galaxy G in the lensing cluster.
Figure 2: The gri composite Subaru image of the field around SDSS J1004 + 4112.
Figure 3: The best-fit lens model prediction compared with the observation.

Similar content being viewed by others

References

  1. Narayan, R. & White, S. D. M. Gravitational lensing in a cold dark matter universe. Mon. Not. R. Astron. Soc. 231, 97–103 (1988)

    Article  ADS  Google Scholar 

  2. Wambsganss, J., Cen, R., Ostriker, J. P. & Turner, E. L. Testing cosmogonic models with gravitational lensing. Science 268, 274–276 (1995)

    Article  ADS  CAS  Google Scholar 

  3. Keeton, C. R. & Madau, P. Lensing constraints on the cores of massive dark matter halos. Astrophys. J. 549, L25–L28 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Wyithe, J. S. B., Turner, E. L. & Spergel, D. N. Gravitational lens statistics for generalized NFW profiles: Parameter degeneracy and implications for self-interacting cold dark matter. Astrophys. J. 555, 504–523 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Takahashi, R. & Chiba, T. Gravitational lens statistics and the density profile of dark halos. Astrophys. J. 563, 489–496 (2001)

    Article  ADS  Google Scholar 

  6. Oguri, M. Constraints on the baryonic compression and implications for the fraction of dark halo lenses. Astrophys. J. 580, 2–11 (2002)

    Article  ADS  Google Scholar 

  7. Navarro, J. F., Frenk, C. S. & White, S. D. M. A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997)

    Article  ADS  Google Scholar 

  8. Maoz, D., Rix, H., Gal-Yam, A. & Gould, A. Survey for large-image separation lensed quasars. Astrophys. J. 486, 75–84 (1997)

    Article  ADS  Google Scholar 

  9. Ofek, E. O., Maoz, D., Prada, F., Kolatt, T. & Rix, H. A survey for large-separation lensed FIRST quasars. Mon. Not. R. Astron. Soc. 324, 463–472 (2001)

    Article  ADS  Google Scholar 

  10. Phillips, P. M. et al. The JVAS/CLASS search for 6-arcsec to 15-arcsec image separation lensing. Mon. Not. R. Astron. Soc. 328, 1001–1015 (2001)

    Article  ADS  Google Scholar 

  11. Zhdanov, V. I. & Surdej, J. Quasar pairs with arcminute angular separations. Astron. Astrophys. 372, 1–7 (2001)

    Article  ADS  Google Scholar 

  12. Kochanek, C. S. et al. CASTLES survey. 〈http://cfa-www.harvard.edu/castles/〉 (2003).

  13. Walsh, D., Carswell, R. F. & Weymann, R. J. 0957 + 561 A, B — Twin quasistellar objects or gravitational lens? Nature 279, 381–384 (1979)

    Article  ADS  CAS  Google Scholar 

  14. Colley, W. N., Tyson, J. A. & Turner, E. L. Unlensing multiple arcs in 0024 + 1654: Reconstruction of the source image. Astrophys. J. 461, L83–L86 (1996)

    Article  ADS  Google Scholar 

  15. Turner, E. L., Ostriker, J. P. & Gott, J. R. III The statistics of gravitational lenses—the distributions of image angular separations and lens redshifts. Astrophys. J. 284, 1–22 (1984)

    Article  ADS  Google Scholar 

  16. York, D. G. et al. The Sloan Digital Sky Survey: Technical summary. Astron. J. 120, 1579–1587 (2000)

    Article  ADS  Google Scholar 

  17. Stoughton, C. et al. Sloan Digital Sky Survey: Early data release. Astron. J. 123, 485–548 (2002)

    Article  ADS  Google Scholar 

  18. Gunn, J. E. et al. The Sloan Digital Sky Survey photometric camera. Astron. J. 116, 3040–3081 (1998)

    Article  ADS  Google Scholar 

  19. Pier, J. R. et al. Astrometric calibration of the Sloan Digital Sky Survey. Astron. J. 125, 1559–1579 (2003)

    Article  ADS  Google Scholar 

  20. Hogg, D. W., Finkbeiner, D. P., Schlegel, D. J. & Gunn, J. E. A photometricity and extinction monitor at the Apache Point Observatory. Astron. J. 122, 2129–2138 (2001)

    Article  ADS  Google Scholar 

  21. Smith, J. A. et al. The u′g′r′i′z′ standard-star system. Astron. J. 123, 2121–2144 (2002)

    Article  ADS  Google Scholar 

  22. Fukugita, M. et al. The Sloan Digital Sky Survey photometric system. Astron. J. 111, 1748–1756 (1996)

    Article  ADS  CAS  Google Scholar 

  23. Blanton, M. R. et al. An efficient targeting strategy for multiobject spectrograph surveys: The Sloan Digital Sky Survey “tiling” algorithm. Astron. J. 125, 2276–2286 (2003)

    Article  ADS  Google Scholar 

  24. Richards, G. T. et al. Spectroscopic target selection in the Sloan Digital Sky Survey: The quasar sample. Astron. J. 123, 2945–2975 (2002)

    Article  ADS  Google Scholar 

  25. Oguri, M., Taruya, A., Suto, Y. & Turner, E. L. Strong gravitational lensing time delay statistics and the density profile of dark halos. Astrophys. J. 568, 488–499 (2002)

    Article  ADS  Google Scholar 

  26. Kashikawa, N. et al. FOCAS: The Faint Object Camera and Spectrograph for the Subaru Telescope. Publ. Astron. Soc. Jpn 54, 819–832 (2002)

    Article  ADS  Google Scholar 

  27. Cao, L., Wei, J.-Y. & Hu, J.-Y. High X-ray-to-optical flux ratio RASS-BSC sources. I. The optical identification. Astron. Astrophys. Suppl. 135, 243–253 (1999)

    Article  ADS  Google Scholar 

  28. Keeton, C. R. Computational methods for gravitational lensing. Preprint at 〈http://xxx.lanl.gov/astro-ph/0102340〉 (2001).

  29. Oke, J. B. et al. The Keck Low-Resolution Imaging Spectrometer. Publ. Astron. Soc. Pacif. 107, 375–385 (1995)

    Article  ADS  Google Scholar 

  30. Miyazaki, S. et al. Subaru prime focus camera—Suprime-Cam. Publ. Astron. Soc. Jpn 54, 833–853 (2002)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Funding for the creation and distribution of the SDSS Archive has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Aeronautics and Space Administration, the National Science Foundation, the US Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society. The SDSS website is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The Participating Institutions are The University of Chicago, Fermilab, the Institute for Advanced Study, The Japan Participation Group, The Johns Hopkins University, Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, University of Pittsburgh, Princeton University, the United States Naval Observatory, and the University of Washington. This Letter is based in part on data collected at the Subaru telescope, which is operated by the National Astronomical Observatory of Japan, W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and the Apache Point Observatory (APO) 3.5-m telescope, which is owned and operated by the Astrophysical Research Consortium. Part of this work was performed under the auspices of the U.S. Department of Energy at the University of California Lawrence Livermore National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naohisa Inada.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inada, N., Oguri, M., Pindor, B. et al. A gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds. Nature 426, 810–812 (2003). https://doi.org/10.1038/nature02153

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02153

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing