Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis

Abstract

Intestinal homeostasis is critical for efficient energy extraction from food and protection from pathogens. Its disruption can lead to an array of severe illnesses with major impacts on public health, such as inflammatory bowel disease characterized by self-destructive intestinal immunity. However, the mechanisms regulating the equilibrium between the large bacterial flora and the immune system remain unclear. Intestinal lymphoid tissues generate flora-reactive IgA-producing B cells, and include Peyer's patches and mesenteric lymph nodes, as well as numerous isolated lymphoid follicles (ILFs)1,2. Here we show that peptidoglycan from Gram-negative bacteria is necessary and sufficient to induce the genesis of ILFs in mice through recognition by the NOD1 (nucleotide-binding oligomerization domain containing 1) innate receptor in epithelial cells, and β-defensin 3- and CCL20-mediated signalling through the chemokine receptor CCR6. Maturation of ILFs into large B-cell clusters requires subsequent detection of bacteria by toll-like receptors. In the absence of ILFs, the composition of the intestinal bacterial community is profoundly altered. Our results demonstrate that intestinal bacterial commensals and the immune system communicate through an innate detection system to generate adaptive lymphoid tissues and maintain intestinal homeostasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intestinal commensal Gram - bacteria induce an extensive network of isolated lymphoid follicles (ILFs).
Figure 2: Peptidoglycans recognized by NOD1 induce the formation of ILFs.
Figure 3: A critical role for CCR6 ligands in the formation of ILFs.
Figure 4: The impact of the CP-ILF system on the commensal flora.

Similar content being viewed by others

References

  1. Hamada, H. et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J. Immunol. 168, 57–64 (2002)

    Article  CAS  Google Scholar 

  2. Tsuji, M. et al. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity 29, 261–271 (2008)

    Article  CAS  Google Scholar 

  3. Mebius, R. E. Organogenesis of lymphoid tissues. Nature Rev. Immunol. 3, 292–303 (2003)

    Article  CAS  Google Scholar 

  4. Kanamori, Y. et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J. Exp. Med. 184, 1449–1459 (1996)

    Article  CAS  Google Scholar 

  5. Pabst, O. et al. Cryptopatches and isolated lymphoid follicles: Dynamic lymphoid tissues dispensable for the generation of intraepithelial lymphocytes. Eur. J. Immunol. 35, 98–107 (2005)

    Article  CAS  Google Scholar 

  6. Eberl, G. & Littman, D. R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science 305, 248–251 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Eberl, G. Inducible lymphoid tissues in the adult gut: Recapitulation of a fetal developmental pathway? Nature Rev. Immunol. 5, 413–420 (2005)

    Article  CAS  Google Scholar 

  8. Pabst, O. et al. Adaptation of solitary intestinal lymphoid tissue in response to microbiota and chemokine receptor CCR7 signaling. J. Immunol. 177, 6824–6832 (2006)

    Article  CAS  Google Scholar 

  9. Fagarasan, S. et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298, 1424–1427 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Eberl, G. et al. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nature Immunol. 5, 64–73 (2004)

    Article  CAS  Google Scholar 

  11. Lorenz, R. G., Chaplin, D. D., McDonald, K. G., McDonough, J. S. & Newberry, R. D. Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin β receptor, and TNF receptor I function. J. Immunol. 170, 5475–5482 (2003)

    Article  CAS  Google Scholar 

  12. Rennert, P. D., Browning, J. L., Mebius, R., Mackay, F. & Hochman, P. S. Surface lymphotoxin α/β complex is required for the development of peripheral lymphoid organs. J. Exp. Med. 184, 1999–2006 (1996)

    Article  CAS  Google Scholar 

  13. Dewhirst, F. E. et al. Phylogeny of the defined murine microbiota: Altered Schaedler flora. Appl. Environ. Microbiol. 65, 3287–3292 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fritz, J. H., Ferrero, R. L., Philpott, D. J. & Girardin, S. E. Nod-like proteins in immunity, inflammation and disease. Nature Immunol. 7, 1250–1257 (2006)

    Article  CAS  Google Scholar 

  15. Magalhaes, J. G. et al. Murine Nod1 but not its human orthologue mediates innate immune detection of tracheal cytotoxin. EMBO Rep. 6, 1201–1207 (2005)

    Article  CAS  Google Scholar 

  16. Koropatnick, T. A. et al. Microbial factor-mediated development in a host-bacterial mutualism. Science 306, 1186–1188 (2004)

    Article  ADS  CAS  Google Scholar 

  17. Lugering, A. & Kucharzik, T. Induction of intestinal lymphoid tissue: The role of cryptopatches. Ann. NY Acad. Sci. 1072, 210–217 (2006)

    Article  ADS  Google Scholar 

  18. McDonald, K. G. et al. CC chemokine receptor 6 expression by B lymphocytes is essential for the development of isolated lymphoid follicles. Am. J. Pathol. 170, 1229–1240 (2007)

    Article  CAS  Google Scholar 

  19. Tanaka, Y. et al. Selective expression of liver and activation-regulated chemokine (LARC) in intestinal epithelium in mice and humans. Eur. J. Immunol. 29, 633–642 (1999)

    Article  CAS  Google Scholar 

  20. Yang, D. et al. Beta-defensins: Linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525–528 (1999)

    Article  CAS  Google Scholar 

  21. Bals, R. et al. Mouse beta-defensin 3 is an inducible antimicrobial peptide expressed in the epithelia of multiple organs. Infect. Immun. 67, 3542–3547 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Voss, E. et al. NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J. Biol. Chem. 281, 2005–2011 (2006)

    Article  CAS  Google Scholar 

  23. Uehara, A., Fujimoto, Y., Fukase, K. & Takada, H. Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol. Immunol. 44, 3100–3111 (2007)

    Article  CAS  Google Scholar 

  24. Boughan, P. K. et al. Nucleotide-binding oligomerization domain-1 and epidermal growth factor receptor: Critical regulators of beta-defensins during Helicobacter pylori infection. J. Biol. Chem. 281, 11637–11648 (2006)

    Article  CAS  Google Scholar 

  25. Wehkamp, J. et al. Inducible and constitutive beta-defensins are differentially expressed in Crohn's disease and ulcerative colitis. Inflamm. Bowel Dis. 9, 215–223 (2003)

    Article  Google Scholar 

  26. Talham, G. L., Jiang, H. Q., Bos, N. A. & Cebra, J. J. Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect. Immun. 67, 1992–2000 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schroder, J. M. & Harder, J. Human β-defensin-2. Int. J. Biochem. Cell Biol. 31, 645–651 (1999)

    Article  CAS  Google Scholar 

  28. Fritz, J. H. et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26, 445–459 (2007)

    Article  CAS  Google Scholar 

  29. Wehkamp, J. et al. NF-kappaB- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: A novel effect of a probiotic bacterium. Infect. Immun. 72, 5750–5758 (2004)

    Article  CAS  Google Scholar 

  30. Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008)

    Article  ADS  CAS  Google Scholar 

  31. Lochner, M. et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORγt+ T cells. J. Exp. Med. 205, 1381–1393 (2008)

    Article  CAS  Google Scholar 

  32. Girardin, S. E. et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003)

    Article  ADS  CAS  Google Scholar 

  33. Antignac, A. et al. Detailed structural analysis of the peptidoglycan of the human pathogen Neisseria meningitidis . J. Biol. Chem. 278, 31521–31528 (2003)

    Article  CAS  Google Scholar 

  34. Schaedler, R. W. & Dubos, R. J. The fecal flora of various strains of mice. Its bearing on their susceptibility to endotoxin. J. Exp. Med. 115, 1149–1160 (1962)

    Article  CAS  Google Scholar 

  35. Heidrich, C., Ursinus, A., Berger, J., Schwarz, H. & Holtje, J. V. Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitivity to large toxic molecules in Escherichia coli . J. Bacteriol. 184, 6093–6099 (2002)

    Article  CAS  Google Scholar 

  36. Godon, J. J., Zumstein, E., Dabert, P., Habouzit, F. & Moletta, R. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol. 63, 2802–2813 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Barman, M. et al. Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect. Immun. 76, 907–915 (2008)

    Article  CAS  Google Scholar 

  38. Sarma-Rupavtarm, R. B., Ge, Z., Schauer, D. B., Fox, J. G. & Polz, M. F. Spatial distribution and stability of the eight microbial species of the altered Schaedler flora in the mouse gastrointestinal tract. Appl. Environ. Microbiol. 70, 2791–2800 (2004)

    Article  CAS  Google Scholar 

  39. Ge, Z. et al. Colonization dynamics of altered Schaedler flora is influenced by gender, aging, and Helicobacter hepaticus infection in the intestines of Swiss Webster mice. Appl. Environ. Microbiol. 72, 5100–5103 (2006)

    Article  CAS  Google Scholar 

  40. Rivas-Santiago, B. et al. β-Defensin gene expression during the course of experimental tuberculosis infection. J. Infect. Dis. 194, 697–701 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Milon, N. Cerf-Bensussan, P. Sansonetti, P. Cossart, A. Phalipon, D. Philpott, G. Marchal and D. Guy-Grand for discussions and critical reading of the manuscript; N. Huntington for intrahepatic injections; M. Cherrier for biochemistry; J. Perez, E. Maranghi and M. Manich for technical assistance; S. Akira, M. Chignard and V. Balloy for Myd88-/- , Trif-/- , Tlr2-/- or Tlr4-/- mice, J.P. Hugot for card15-/- mice, Millennium Pharmaceuticals for card4-/- mice and D. Philpott for card4-/- mice backcrossed to C57BL/6; J. Browning for LTβR-Ig and Z. Ge for the 16S rDNA plasmids. This work was supported by Institut Pasteur, CNRS, INSERM, ANR, Fondation de la Recherche Médicale, Mairie de Paris, a Marie Curie Excellence grant, La Fondation de France (D.B.) and la Ligue Nationale contre le Cancer (D.B.).

Author Contributions All authors, except R.V., contributed to the design of experiments, analysis of the data and writing of the manuscript. G.E. supervised experiments and wrote the manuscript, D.B. performed most experiments, C.B. and M.B. reconstituted germ-free mice with bacterial cocktails or strains, C.B. developed strain-specific qPCR on 16S rDNA, R.V. provided CCR6-deficient mice, I.G.B. purified PGNs and prepared E. coli mutants, and C.W. tested the functionality of PGNs and E. coli mutants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Eberl.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-7 with Legends, Supplementary Table 1 and Supplementary References (PDF 5408 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouskra, D., Brézillon, C., Bérard, M. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008). https://doi.org/10.1038/nature07450

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07450

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing