Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Climate change and evolutionary adaptation

Abstract

Evolutionary adaptation can be rapid and potentially help species counter stressful conditions or realize ecological opportunities arising from climate change. The challenges are to understand when evolution will occur and to identify potential evolutionary winners as well as losers, such as species lacking adaptive capacity living near physiological limits. Evolutionary processes also need to be incorporated into management programmes designed to minimize biodiversity loss under rapid climate change. These challenges can be met through realistic models of evolutionary change linked to experimental data across a range of taxa.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential effect of evolution in egg desiccation resistance on life-cycle completions of the mosquito Aedes aegypti in the region around Darwin, Australia.

Similar content being viewed by others

References

  1. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003)

    CAS  PubMed  ADS  Google Scholar 

  2. Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010)Evolutionary models were explicitly considered in this study of the extinction risk of lizard species to climate change.

    CAS  PubMed  ADS  Google Scholar 

  3. Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6, 2621–2626 (2008)

    CAS  PubMed  Google Scholar 

  4. Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17, 20–29 (2008)

    PubMed  Google Scholar 

  5. Whitney, K. D. & Gabler, C. A. Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers. Distrib. 14, 569–580 (2008)

    Google Scholar 

  6. Carroll, S. P. Facing change: forms and foundations of contemporary adaptation to biotic invasions. Mol. Ecol. 17, 361–372 (2008)

    PubMed  Google Scholar 

  7. Kearney, M., Porter, W. P., Williams, C., Ritchie, S. & Hoffmann, A. A. Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia. Funct. Ecol. 23, 528–538 (2009)Incorporated for the first time trait evolution into a mechanistic model, showing that predictions about species-distribution shifts under climate change can be inaccurate if evolution is ignored.

    Google Scholar 

  8. Kanarek, A. & Webb, C. Allee effects, adaptive evolution, and invasion success. Evol. Appl. 3, 122–135 (2010)

    PubMed  PubMed Central  Google Scholar 

  9. Klenner, W. & Arsenault, A. Ponderosa pine mortality during a severe bark beetle (Coleoptera: Curculionidae, Scolytinae) outbreak in southern British Columbia and implications for wildlife habitat management. For. Ecol. Manage. 258, S5–S14 (2009)

    Google Scholar 

  10. Bell, G. & Collins, S. Adaptation, extinction and global change. Evol. Appl. 1, 3–16 (2008)Using experimental evolution, demonstrates that evolutionary adaptation to climate change can influence the ability of species to take advantage of potentially favourable conditions arising from climate change, including the effects of CO 2 enrichment on growth rate.

    PubMed  PubMed Central  Google Scholar 

  11. Bradshaw, W. E. & Holzapfel, C. M. Genetic response to rapid climate change: it’s seasonal timing that matters. Mol. Ecol. 17, 157–166 (2008)

    CAS  PubMed  Google Scholar 

  12. Stillman, J. H. Causes and consequences of thermal tolerance limits in rocky intertidal porcelain crabs, genus Petrolisthes. Integr. Comp. Biol. 42, 790–796 (2002)

    PubMed  Google Scholar 

  13. Huey, R. B. et al. Why tropical forest lizards are vulnerable to climate warming. Proc. R. Soc. B 276, 1939–1948 (2009)

    PubMed  Google Scholar 

  14. Crispo, E. et al. The evolution of phenotypic plasticity in response to anthropogenic disturbance. Evol. Ecol. Res. 12, 47–66 (2010)

    Google Scholar 

  15. Van Der Jeugd, H. P. et al. Keeping up with early springs: rapid range expansion in an avian herbivore incurs a mismatch between reproductive timing and food supply. Glob. Change Biol. 15, 1057–1071 (2009)

    ADS  Google Scholar 

  16. Gozlan, R. E., Britton, J. R., Cowx, I. & Copp, G. H. Current knowledge on non-native freshwater fish introductions. J. Fish Biol. 76, 751–786 (2010)

    Google Scholar 

  17. Forister, M. L. et al. Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proc. Natl Acad. Sci. USA 107, 2088–2092 (2010)

    CAS  PubMed  ADS  Google Scholar 

  18. Hadfield, J. D., Wilson, A. J., Garant, D., Sheldon, B. C. & Kruuk, L. E. B. The misuse of BLUP in ecology and evolution. Am. Nat. 175, 116–125 (2010)Highlights the potential pitfalls associated with using quantitative genetic approaches to identify genetic changes in populations over time.

    PubMed  Google Scholar 

  19. Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A. & Merila, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17, 167–178 (2008)

    CAS  PubMed  Google Scholar 

  20. Ozgul, A. et al. Coupled dynamics of body mass and population growth in response to environmental change. Nature 466, 482–485 (2010)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Ozgul, A. et al. The dynamics of phenotypic change and the shrinking sheep of St. Kilda. Science 325, 464–467 (2009)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Etterson, J. R. Evolutionary potential of Chamaecrista fasciculata in relation to climate change. I. Clinal patterns of selection along an environmental gradient in the great plains. Evolution 58, 1446–1458 (2004)

    PubMed  Google Scholar 

  23. Linhart, Y. B. & Grant, M. C. Evolutionary significance of local genetic differentiation in plants. Annu. Rev. Ecol. Syst. 27, 237–277 (1996)

    Google Scholar 

  24. Ayrinhac, A. et al. Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability. Funct. Ecol. 18, 700–706 (2004)

    Google Scholar 

  25. Hoffmann, A. A., Shirriffs, J. & Scott, M. Relative importance of plastic vs genetic factors in adaptive differentiation: geographical variation for stress resistance in Drosophila melanogaster from eastern Australia. Funct. Ecol. 19, 222–227 (2005)

    Google Scholar 

  26. Kingsolver, J. G., Massie, K. R., Ragland, G. J. & Smith, M. H. Rapid population divergence in thermal reaction norms for an invading species: breaking the temperature–size rule. J. Evol. Biol. 20, 892–900 (2007)

    CAS  PubMed  Google Scholar 

  27. Franks, S. J., Sim, S. & Weis, A. E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl Acad. Sci. USA 104, 1278–1282 (2007)

    CAS  PubMed  ADS  Google Scholar 

  28. Pulido, F. & Berthold, P. Current selection for lower migratory activity will drive the evolution of residency in a migratory bird population. Proc. Natl Acad. Sci. USA 107, 7341–7346 (2010)

    CAS  PubMed  ADS  Google Scholar 

  29. Gardner, J. L., Heinsohn, R. & Joseph, L. Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines. Proc. R. Soc. B 276, 3845–3852 (2009)

    PubMed  Google Scholar 

  30. Bradshaw, W. E., Armbruster, P. A. & Holzapfel, C. M. Fitness consequences of hibernal diapause in the pitcher-plant mosquito, Wyeomyia smithii. Ecology 79, 1458–1462 (1998)

    Google Scholar 

  31. Ragland, G. J. & Kingsolver, J. G. Evolution of thermotolerance in seasonal environments: the effects of annual temperature variation and life-history timing in Wyeomyia smithii. Evolution 62, 1345–1357 (2008)

    PubMed  Google Scholar 

  32. Schmidt, P. S., Matzkin, L., Ippolito, M. & Eanes, W. F. Geographic variation in diapause incidence, life-history traits, and climatic adaptation in Drosophila melanogaster. Evolution 59, 1721–1732 (2005)

    PubMed  Google Scholar 

  33. Hoffmann, A. A. A genetic perspective on insect climate specialists. Aust. J. Entomol. 49, 93–103 (2010)

    Google Scholar 

  34. Walsh, B. & Blows, M. W. Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annu. Rev. Ecol. Evol. Syst. 40, 41–59 (2009)

    Google Scholar 

  35. van Asch, M., Tienderen, P. H., Holleman, L. J. M. & Visser, M. E. Predicting adaptation of phenology in response to climate change, an insect herbivore example. Glob. Change Biol. 13, 1596–1604 (2007)

    ADS  Google Scholar 

  36. Maloney, S. K., Fuller, A. & Mitchell, D. Climate change: is the dark Soay sheep endangered? Biol. Lett. 5, 826–829 (2009)

    PubMed  PubMed Central  Google Scholar 

  37. Hoffmann, A. A., Sorensen, J. G. & Loeschcke, V. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J. Therm. Biol. 28, 175–216 (2003)

    Google Scholar 

  38. Jump, A. S. et al. Simulated climate change provokes rapid genetic change in the Mediterranean shrub Fumana thymifolia. Glob. Change Biol. 14, 637–643 (2008)

    ADS  Google Scholar 

  39. Mimura, M. & Aitken, S. N. Local adaptation at the range peripheries of Sitka spruce. J. Evol. Biol. 23, 249–258 (2010)

    CAS  PubMed  Google Scholar 

  40. Loehr, J., Carey, J., O'Hara, R. B. & Hik, D. S. The role of phenotypic plasticity in responses of hunted thinhorn sheep ram horn growth to changing climate conditions. J. Evol. Biol. 23, 783–790 (2010)

    CAS  PubMed  Google Scholar 

  41. Teplitsky, C., Mills, J. A., Yarrall, J. W. & Merila, J. Indirect genetic effects in a sex-limited trait: the case of breeding time in red-billed gulls. J. Evol. Biol. 23, 935–944 (2010)

    CAS  PubMed  Google Scholar 

  42. Kellermann, V., van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325, 1244–1246 (2009)

    CAS  PubMed  ADS  Google Scholar 

  43. Etterson, J. R. & Shaw, R. G. Constraint to adaptive evolution in response to global warming. Science 294, 151–154 (2001)

    CAS  PubMed  ADS  Google Scholar 

  44. Sheldon, B. C., Kruuk, L. E. B. & Merila, J. Natural selection and inheritance of breeding time and clutch size in the collared flycatcher. Evolution 57, 406–420 (2003)

    CAS  PubMed  Google Scholar 

  45. Tonsor, S. J. et al. Heat shock protein 101 effects in A. thaliana: genetic variation, fitness and pleiotropy in controlled temperature conditions. Mol. Ecol. 17, 1614–1626 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kristensen, T. N., Loeschcke, V. & Hoffmann, A. A. Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Proc. R. Soc. B 274, 771–778 (2007)

    PubMed  Google Scholar 

  47. Lynch, M. & Lande, R. in Biotic Interactions and Global Change (eds Kareiva, P. M., Kingsolver, J. G. & Huey, R. B. ) (Sinauer, 1993)

    Google Scholar 

  48. Burger, R. & Lynch, M. Evolution and extinction in a changing environment—a quantitative-genetic analysis. Evolution 49, 151–163 (1995)

    PubMed  Google Scholar 

  49. Willi, Y. & Hoffmann, A. A. Demographic factors and genetic variation influence population persistence under environmental change. J. Evol. Biol. 22, 124–133 (2009)

    PubMed  Google Scholar 

  50. Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010)Review and advance in theory considering the effects of plasticity and evolutionary adaptation in combination.

    PubMed  PubMed Central  Google Scholar 

  51. Gomulkiewicz, R. & Holt, R. D. When does evolution by natural selection prevent extinction? Evolution 49, 201–207 (1995)

    PubMed  Google Scholar 

  52. Orr, H. A. & Unckless, R. L. Population extinction and the genetics of adaptation. Am. Nat. 172, 160–169 (2008)

    PubMed  Google Scholar 

  53. Bell, G. & Gonzalez, A. Evolutionary rescue can prevent extinction following environmental change. Ecol. Lett. 12, 942–948 (2009)

    PubMed  Google Scholar 

  54. Kirkpatrick, M. & Barton, N. H. Evolution of a species’ range. Am. Nat. 150, 1–23 (1997)

    CAS  PubMed  Google Scholar 

  55. Bridle, J. R., Polechova, J., Kawata, M. & Butlin, R. K. Why is adaptation prevented at ecological margins? New insights from individual-based simulations. Ecol. Lett. 13, 485–494 (2010)

    PubMed  Google Scholar 

  56. Dawson, M. N., Grosberg, R. K., Stuart, Y. E. & Sanford, E. Population genetic analysis of a recent range expansion: mechanisms regulating the poleward range limit in the volcano barnacle Tetraclita rubescens. Mol. Ecol. 19, 1585–1605 (2010)

    CAS  PubMed  Google Scholar 

  57. Angert, A. L., Bradshaw, H. D. & Schemske, D. W. Using experimental evolution to investigate geographic range limits in Monkeyflowers. Evolution 62, 2660–2675 (2008)

    PubMed  Google Scholar 

  58. Kuparinen, A., Savolainen, O. & Schurr, F. M. Increased mortality can promote evolutionary adaptation of forest trees to climate change. For. Ecol. Manage. 259, 1003–1008 (2010)Uses empirical data to parameterize an individual-based model of adaptation in two trees along a gradient and set the limits of adaptive genetic change.

    Google Scholar 

  59. Orr, H. A. The population genetics of beneficial mutations. Philos. Trans. R. Soc. B 365, 1195–1201 (2010)

    Google Scholar 

  60. Collins, S. & de Meaux, J. Adaptation to different rates of environmental change in Chlamydomonas. Evolution 63, 2952–2965 (2009)

    PubMed  Google Scholar 

  61. Grant, P. R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296, 707–711 (2002)

    CAS  PubMed  ADS  Google Scholar 

  62. Björklund, M. et al. Quantitative trait evolution and environmental change. PLoS ONE 4, e4521 (2009)

    PubMed  PubMed Central  ADS  Google Scholar 

  63. Collins, S. & Bell, G. Evolution of natural algal populations at elevated CO2 . Ecol. Lett. 9, 129–135 (2006)

    PubMed  Google Scholar 

  64. Cooper, V. S., Bennett, A. F. & Lenski, R. E. Evolution of thermal dependence of growth rate of Escherichia coli populations during 20,000 generations in a constant environment. Evolution 55, 889–896 (2001)

    CAS  PubMed  Google Scholar 

  65. Bennett, A. F. & Lenski, R. E. An experimental test of evolutionary trade-offs during temperature adaptation. Proc. Natl Acad. Sci. USA 104, 8649–8654 (2007)

    CAS  PubMed  ADS  Google Scholar 

  66. Pörtner, H. O. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010)

    PubMed  Google Scholar 

  67. Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010)

    CAS  PubMed  Google Scholar 

  68. Willis, C. G., Ruhfel, B., Primack, R. B., Miller-Rushing, A. J. & Davis, C. C. Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proc. Natl Acad. Sci. USA 105, 17029–17033 (2008)

    CAS  PubMed  ADS  Google Scholar 

  69. Willis, C. G. et al. Favorable climate change response explains non-native species’ success in Thoreau’s Woods. PLoS ONE 5, e8878 (2010)

    PubMed  PubMed Central  ADS  Google Scholar 

  70. Garroway, C. J. et al. Climate change induced hybridization in flying squirrels. Glob. Change Biol. 16, 113–121 (2010)

    ADS  Google Scholar 

  71. Muhlfeld, C. C. et al. Hybridization rapidly reduces fitness of a native trout in the wild. Biol. Lett. 5, 328–331 (2009)

    PubMed  PubMed Central  Google Scholar 

  72. Beatty, G. E., Philipp, M. & Provan, J. Unidirectional hybridization at a species’ range boundary: implications for habitat tracking. Divers. Distrib. 16, 1–9 (2010)

    Google Scholar 

  73. Besansky, N. J. et al. Semipermeable species boundaries between Anopheles gambiae and Anopheles arabiensis: evidence from multilocus DNA sequence variation. Proc. Natl Acad. Sci. USA 100, 10818–10823 (2003)

    CAS  PubMed  ADS  Google Scholar 

  74. Grant, P. R. & Grant, B. R. Conspecific versus heterospecific gene exchange between populations of Darwin’s finches. Philos. Trans. R. Soc. B 365, 1065–1076 (2010)Highlights the potential importance of hybridization in generating genetic variation for adapting to climate change.

    Google Scholar 

  75. Donovan, L. A., Rosenthal, D. M., Sanchez-Velenosi, M., Rieseberg, L. H. & Ludwig, F. Are hybrid species more fit than ancestral parent species in the current hybrid species habitats? J. Evol. Biol. 23, 805–816 (2010)

    CAS  PubMed  Google Scholar 

  76. Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009)

    Google Scholar 

  77. Gallagher, R. V., Beaumont, L. J., Hughes, L. & Leishman, M. R. Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. J. Ecol. 98, 790–799 (2010)

    Google Scholar 

  78. Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009)

    PubMed  Google Scholar 

  79. Mace, G. M. & Purvis, A. Evolutionary biology and practical conservation: bridging a widening gap. Mol. Ecol. 17, 9–19 (2008)

    PubMed  Google Scholar 

  80. Broadhurst, L. M. et al. Seed supply for broadscale restoration: maximising evolutionary potential. Evolutionary Applications 1, 587–597 (2008)

    PubMed  PubMed Central  Google Scholar 

  81. Jones, T. A. & Monaco, T. A. A role for assisted evolution in designing native plant materials for domesticated landscapes. Front. Ecol. Environ 7, 541–547 (2009)

    Google Scholar 

  82. Vandergast, A. G., Bohonak, A. J., Hathaway, S. A., Boys, J. & Fisher, R. N. Are hotspots of evolutionary potential adequately protected in southern California? Biol. Conserv. 141, 1648–1664 (2008)

    Google Scholar 

  83. Moritz, C., Hoskin, C., Graham, C. H., Hugall, A. & Moussalli, A. in Phylogeny and Conservation (eds Purvis, A., Gittleman, J. L. & Brooks, T. ) 243–267 (Cambridge Univ. Press, 2009)

    Google Scholar 

  84. Watters, J. V., Lema, S. C. & Nevitt, G. A. Phenotype management: a new approach to habitat restoration. Biol. Conserv. 112, 435–445 (2003)

    Google Scholar 

  85. Dahlhoff, E. P. et al. Effects of temperature on physiology and reproductive success of a montane leaf beetle: implications for persistence of native populations enduring climate change. Physiol. Biochem. Zool. 81, 718–732 (2008)

    PubMed  Google Scholar 

  86. Visser, M. E. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. B 275, 649–659 (2008)

    PubMed  Google Scholar 

  87. Van Doorslaer, W., Stoks, R., Duvivier, C., Bednarska, A. & De Meester, L. Population dynamics determine genetic adaptation to temperature in Daphnia. Evolution 63, 1867–1878 (2009)

    PubMed  Google Scholar 

  88. Collins, S. & Bell, G. Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature 431, 566–569 (2004)

    CAS  PubMed  ADS  Google Scholar 

  89. Larsen, P. F. et al. Adaptive differences in gene expression in European flounder (Platichthys flesus). Mol. Ecol. 16, 4674–4683 (2007)

    CAS  PubMed  Google Scholar 

  90. Michalski, S. G. et al. Evidence for genetic differentiation and divergent selection in an autotetraploid forage grass (Arrhenatherum elatius). Theor. Appl. Genet. 120, 1151–1162 (2010)

    PubMed  Google Scholar 

Download references

Acknowledgements

A.A.H. was supported by an ARC Australian Laureate Fellowship. C.M.S. was supported by an ARC Australian Research Fellowship. A.A.H. and C.M.S. were also supported by funding provided by the Commonwealth Environment Research Facility. We thank P. Griffin, A. Miller and C. Robin for comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.A.H. developed the framework for the review, both authors contributed sections.

Corresponding author

Correspondence to Ary A. Hoffmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, A., Sgrò, C. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011). https://doi.org/10.1038/nature09670

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09670

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing