Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK

Abstract

In metazoans, the Ras–Raf–MEK (mitogen-activated protein-kinase kinase)–ERK (extracellular signal-regulated kinase) signalling pathway relays extracellular stimuli to elicit changes in cellular function and gene expression. Aberrant activation of this pathway through oncogenic mutations is responsible for a large proportion of human cancer. Kinase suppressor of Ras (KSR)1,2,3 functions as an essential scaffolding protein to coordinate the assembly of Raf–MEK–ERK complexes4,5. Here we integrate structural and biochemical studies to understand how KSR promotes stimulatory Raf phosphorylation of MEK (refs 6, 7). We show, from the crystal structure of the kinase domain of human KSR2 (KSR2(KD)) in complex with rabbit MEK1, that interactions between KSR2(KD) and MEK1 are mediated by their respective activation segments and C-lobe αG helices. Analogous to BRAF (refs 8, 9), KSR2 self-associates through a side-to-side interface involving Arg 718, a residue identified in a genetic screen as a suppressor of Ras signalling1,2,3. ATP is bound to the KSR2(KD) catalytic site, and we demonstrate KSR2 kinase activity towards MEK1 by in vitro assays and chemical genetics. In the KSR2(KD)–MEK1 complex, the activation segments of both kinases are mutually constrained, and KSR2 adopts an inactive conformation. BRAF allosterically stimulates the kinase activity of KSR2, which is dependent on formation of a side-to-side KSR2–BRAF heterodimer. Furthermore, KSR2–BRAF heterodimerization results in an increase of BRAF-induced MEK phosphorylation via the KSR2-mediated relay of a signal from BRAF to release the activation segment of MEK for phosphorylation. We propose that KSR interacts with a regulatory Raf molecule in cis to induce a conformational switch of MEK, facilitating MEK’s phosphorylation by a separate catalytic Raf molecule in trans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the KSR2(KD)–MEK1 heterodimer.
Figure 2: KSR2 is a protein kinase.
Figure 3: KSR2 and BRAF homodimerize through a conserved side-to-side interface, but generate different quaternary structures.
Figure 4: Stimulation of MEK phosphorylation by an allosteric transition of KSR mediated by BRAF binding to the Arg 718 side-to-side interface.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and structure factors have been deposited in the RCSB Protein Data Bank with accession numbers 2y4i and 2y4isf, respectively.

References

  1. Kornfeld, K., Hom, D. B. & Horvitz, H. R. The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans . Cell 83, 903–913 (1995)

    Article  CAS  Google Scholar 

  2. Sundaram, M. & Han, M. The C. elegans ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction. Cell 83, 889–901 (1995)

    Article  CAS  Google Scholar 

  3. Therrien, M. et al. KSR, a novel protein kinase required for RAS signal transduction. Cell 83, 879–888 (1995)

    Article  CAS  Google Scholar 

  4. Clapéron, A. & Therrien, M. KSR and CNK: two scaffolds regulating RAS-mediated RAF activation. Oncogene 26, 3143–3158 (2007)

    Article  Google Scholar 

  5. Kolch, W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nature Rev. Mol. Cell Biol. 6, 827–837 (2005)

    Article  CAS  Google Scholar 

  6. Therrien, M., Michaud, N. R., Rubin, G. M. & Morrison, D. K. KSR modulates signal propagation within the MAPK cascade. Genes Dev. 10, 2684–2695 (1996)

    Article  CAS  Google Scholar 

  7. Michaud, N. R. et al. KSR stimulates Raf-1 activity in a kinase-independent manner. Proc. Natl Acad. Sci. USA 94, 12792–12796 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Rajakulendran, T., Sahmi, M., Lefrancois, M., Sicheri, F. & Therrien, M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461, 542–545 (2009)

    Article  ADS  CAS  Google Scholar 

  9. Wan, P. T. et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004)

    Article  CAS  Google Scholar 

  10. Ohren, J. F. et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nature Struct. Mol. Biol. 11, 1192–1197 (2004)

    Article  CAS  Google Scholar 

  11. Cai, Z., Chehab, N. H. & Pavletich, N. P. Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase. Mol. Cell 35, 818–829 (2009)

    Article  CAS  Google Scholar 

  12. Fischmann, T. O. et al. Crystal structures of MEK1 binary and ternary complexes with nucleotides and inhibitors. Biochemistry 48, 2661–2674 (2009)

    Article  CAS  Google Scholar 

  13. Iverson, C. et al. RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer. Cancer Res. 69, 6839–6847 (2009)

    Article  CAS  Google Scholar 

  14. Denouel-Galy, A. et al. Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr. Biol. 8, 46–55 (1998)

    Article  CAS  Google Scholar 

  15. Yu, W., Fantl, W. J., Harrowe, G. & Williams, L. T. Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK. Curr. Biol. 8, 56–64 (1998)

    Article  CAS  Google Scholar 

  16. Stewart, S. et al. Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol. Cell. Biol. 19, 5523–5534 (1999)

    Article  CAS  Google Scholar 

  17. McKay, M. M., Ritt, D. A. & Morrison, D. K. Signaling dynamics of the KSR1 scaffold complex. Proc. Natl Acad. Sci. USA 106, 11022–11027 (2009)

    Article  ADS  CAS  Google Scholar 

  18. Muller, J., Cacace, A. M., Lyons, W. E., McGill, C. B. & Morrison, D. K. Identification of B-KSR1, a novel brain-specific isoform of KSR1 that functions in neuronal signaling. Mol. Cell. Biol. 20, 5529–5539 (2000)

    Article  CAS  Google Scholar 

  19. Zhang, Y. et al. Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 89, 63–72 (1997)

    Article  CAS  Google Scholar 

  20. Sugimoto, T., Stewart, S., Han, M. & Guan, K. L. The kinase suppressor of Ras (KSR) modulates growth factor and Ras signaling by uncoupling Elk-1 phosphorylation from MAP kinase activation. EMBO J. 17, 1717–1727 (1998)

    Article  CAS  Google Scholar 

  21. Xu, W., Harrison, S. C. & Eck, M. J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997)

    Article  ADS  CAS  Google Scholar 

  22. Douziech, M., Sahmi, M., Laberge, G. & Therrien, M. A. KSR/CNK complex mediated by HYP, a novel SAM domain-containing protein, regulates RAS-dependent RAF activation in Drosophila . Genes Dev. 20, 807–819 (2006)

    Article  CAS  Google Scholar 

  23. Jura, N., Shan, Y., Cao, X., Shaw, D. E. & Kuriyan, J. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc. Natl Acad. Sci. USA 106, 21608–21613 (2009)

    Article  ADS  CAS  Google Scholar 

  24. Shi, F., Telesco, S. E., Liu, Y., Radhakrishnan, R. & Lemmon, M. A. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc. Natl Acad. Sci. USA 107, 7692–7697 (2010)

    Article  ADS  CAS  Google Scholar 

  25. Alessi, D. R., Cuenda, A., Cohen, P., Dudley, D. T. & Saltiel, A. R. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo . J. Biol. Chem. 270, 27489–27494 (1995)

    Article  CAS  Google Scholar 

  26. Statsuk, A. V. et al. Tuning a three-component reaction for trapping kinase substrate complexes. J. Am. Chem. Soc. 130, 17568–17574 (2008)

    Article  CAS  Google Scholar 

  27. Roy, F., Laberge, G., Douziech, M., Ferland-McCollough, D. & Therrien, M. KSR is a scaffold required for activation of the ERK/MAPK module. Genes Dev. 16, 427–438 (2002)

    Article  CAS  Google Scholar 

  28. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007)

    Article  ADS  CAS  Google Scholar 

  29. Collaborative Computer Project 4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  30. Claude, J. B., Suhre, K., Notredame, C., Claverie, J. M. & Abergel, C. CaspR: a web server for automated molecular replacement using homology modelling. Nucleic Acids Res. 32, W606–W609 (2004)

    Article  CAS  Google Scholar 

  31. Poirot, O., Suhre, K., Abergel, C., O’Toole, E. & Notredame, C. 3DCoffee@igs: a web server for combining sequences and structures into a multiple sequence alignment Nucleic Acids Res. 32, W37–W40 (2004)

    Google Scholar 

  32. Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993)

    Article  CAS  Google Scholar 

  33. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  34. McGuffin, L. J. & Jones, D. T. Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics 19, 874–881 (2003)

    Article  CAS  Google Scholar 

  35. Cronin, C. N., Lim, K. B. & Rogers, J. Production of selenomethionyl-derivatized proteins in baculovirus-infected insect cells. Protein Sci. 16, 2023–2029 (2007)

    Article  CAS  Google Scholar 

  36. Allen, J. J. et al. A semisynthetic epitope for kinase substrates. Nature Methods 4, 511–516 (2007)

    Article  CAS  Google Scholar 

  37. Bankston, D. et al. A scaleable synthesis of BAY 43-9006: A potent raf kinase inhibitor for the treatment of cancer. Org. Process Res. Dev. 6, 777–781 (2002)

    Article  CAS  Google Scholar 

  38. Hertz, N. T. et al. Chemical genetic approach for kinase-substrate mapping by covalent capture of thiophosphopeptides and analysis by mass spectrometry. Curr. Prot. . Chem. Biol. 2, 15–36 (2010)

    Google Scholar 

  39. Trinidad, J. C. et al. Quantitative analysis of synaptic phosphorylation and protein expression. Mol. Cell. Proteomics 7, 684–696 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Cancer Research UK grant to D.B., ICR studentships to D.F.B. and W.C.H.C. and HHMI grant to K.M.S. We thank staff at the ESRF for help with data collection and K. Wood and V. Good for help with protein production and Z. Zhang for assistance with cloning. Mass spectrometry was made possible by NIH grants NCRR RR015804 and NCRR RR001614. The MEK1/p50Cdc37 baculovirus was a gift from C. Vaughan. We thank Cell Signaling Technologies for help with phosphospecific MEK antibodies.

Author information

Authors and Affiliations

Authors

Contributions

D.F.B. determined and analysed the MEK1–KSR2 structure; A.C.D. conducted biochemical analysis of Raf–KSR–MEK phosphorylation and inhibitor studies; N.T.H. carried out phosphoproteomics mass spectrometry studies; W.C.H.C. helped with protein production; A.L.B. analysed mass spectrometry data; K.M.S. designed and analysed experiments relating to the Raf–KSR–MEK phosphorylation and inhibitor studies; and D.B. designed experiments and analysed data.

Corresponding authors

Correspondence to Kevan M. Shokat or David Barford.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains Supplementary Figures 1-17 with legends, Supplementary Tables 1-2 and additional references. (PDF 26560 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brennan, D., Dar, A., Hertz, N. et al. A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK. Nature 472, 366–369 (2011). https://doi.org/10.1038/nature09860

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09860

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer