Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320

Abstract

PTEN (Phosphatase and tensin homolog deleted on chromosome 10) expression in stromal fibroblasts suppresses epithelial mammary tumours, but the underlying molecular mechanisms remain unknown. Using proteomic and expression profiling, we show that Pten loss from mammary stromal fibroblasts activates an oncogenic secretome that orchestrates the transcriptional reprogramming of other cell types in the microenvironment. Downregulation of miR-320 and upregulation of one of its direct targets, ETS2 (v-ets erythroblastosis virus E26 oncogene homolog 2) are critical events in Pten-deleted stromal fibroblasts responsible for inducing this oncogenic secretome, which in turn promotes tumour angiogenesis and tumour-cell invasion. Expression of the Pten–miR-320–Ets2-regulated secretome distinguished human normal breast stroma from tumour stroma and robustly correlated with recurrence in breast cancer patients. This work reveals miR-320 as a critical component of the Pten tumour-suppressor axis that acts in stromal fibroblasts to reprogramme the tumour microenvironment and curtail tumour progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: miR-320 is a PTEN target in fibroblasts that suppresses tumour growth.
Figure 2: miR-320 and PTEN are co-expressed in human tumour stroma.
Figure 3: Pten and miR-320 in fibroblasts control tumour-cell migration and growth.
Figure 4: miR-320 regulates the secretome of MMFs.
Figure 5: Identification and characterization of Ets2, Mmp9 and Emilin2 as bona fide targets of miR-320.
Figure 6: The miR-320 secretome profile separates human breast normal and cancer stroma (tumour type, TT) and predicts patient outcome.

Similar content being viewed by others

References

  1. Mueller, M. M. & Fusenig, N. E. Friends or foes—bipolar effects of the tumour stroma in cancer. Nat. Rev. Cancer 4, 839–849 (2004).

    Article  CAS  Google Scholar 

  2. Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004).

    Article  CAS  Google Scholar 

  3. Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 (2006).

    Article  CAS  Google Scholar 

  4. Eswarakumar, V. P., Lax, I. & Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16, 139–149 (2005).

    Article  CAS  Google Scholar 

  5. Sotgia, F. et al. Caveolin-1−/− null mammary stromal fibroblasts share characteristics with human breast cancer-associated fibroblasts. Am. J. Pathol. 174, 746–761 (2009).

    Article  CAS  Google Scholar 

  6. Trimboli, A. J. et al. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461, 1084–1091 (2009).

    Article  CAS  Google Scholar 

  7. Di Leva, G. & Croce, C. M. Roles of small RNAs in tumor formation. Trends Mol. Med. 16, 257–267.

  8. Ventura, A. & Jacks, T. MicroRNAs and cancer: short RNAs go a long way. Cell 136, 586–591 (2009).

    Article  CAS  Google Scholar 

  9. Trimboli, A. J. et al. Direct evidence for epithelial–mesenchymal transitions in breast cancer. Cancer Res. 68, 937–945 (2008).

    Article  CAS  Google Scholar 

  10. Bader, A. G., Brown, D. & Winkler, M. The promise of microRNA replacement therapy. Cancer Res. 70, 7027–7030 (2010).

    Article  CAS  Google Scholar 

  11. Zhang, L. et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl Acad. Sci. USA 103, 9136–9141 (2006).

    Article  CAS  Google Scholar 

  12. Ichimi, T. et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int. J. Cancer 125, 345–352 (2009).

    Article  CAS  Google Scholar 

  13. Schepeler, T. et al. Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res. 68, 6416–6424 (2008).

    Article  CAS  Google Scholar 

  14. Mattie, M. D. et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol. Cancer 5, 24 (2006).

    Article  Google Scholar 

  15. Yan, L. X. et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14, 2348–2360 (2008).

    Article  CAS  Google Scholar 

  16. Borowsky, A. D. et al. Syngeneic mouse mammary carcinoma cell lines: two closely related cell lines with divergent metastatic behavior. Clin. Exp. Metastasis 22, 47–59 (2005).

    Article  CAS  Google Scholar 

  17. Nuovo, G. J. In situ detection of precursor and mature microRNAs in paraffin embedded, formalin fixed tissues and cell preparations. Methods 44, 39–46 (2008).

    Article  CAS  Google Scholar 

  18. Jorgensen, S., Baker, A., Moller, S. & Nielsen, B. S. Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNA probes. Methods 52, 375–381 (2010).

    Article  CAS  Google Scholar 

  19. Nuovo, G., Lee, E. J., Lawler, S., Godlewski, J. & Schmittgen, T. In situ detection of mature microRNAs by labeled extension on ultramer templates. Biotechniques 46, 115–126 (2009).

    Article  CAS  Google Scholar 

  20. Obernosterer, G., Leuschner, P. J., Alenius, M. & Martinez, J. Post-transcriptional regulation of microRNA expression. RNA 12, 1161–1167 (2006).

    Article  CAS  Google Scholar 

  21. Politz, J. C., Hogan, E. M. & Pederson, T. MicroRNAs with a nucleolar location. RNA 15, 1705–1715 (2009).

    Article  CAS  Google Scholar 

  22. Kim, D. H., Saetrom, P., Snove, O. Jr & Rossi, J. J. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc. Natl Acad. Sci. USA 105, 16230–16235 (2008).

    Article  CAS  Google Scholar 

  23. Huber, M. A., Kraut, N. & Beug, H. Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17, 548–558 (2005).

    Article  CAS  Google Scholar 

  24. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  25. Hughes, C. C. Endothelial–stromal interactions in angiogenesis. Curr. Opin. Hematol. 15, 204–209 (2008).

    Article  Google Scholar 

  26. Orlichenko, L. S. & Radisky, D. C. Matrix metalloproteinases stimulate epithelial–mesenchymal transition during tumor development. Clin. Exp. Metastasis 25, 593–600 (2008).

    Article  CAS  Google Scholar 

  27. Mongiat, M. et al. The extracellular matrix glycoprotein elastin microfibril interface located protein 2: a dual role in the tumor microenvironment. Neoplasia 12, 294–304 (2010).

    Article  CAS  Google Scholar 

  28. Aoyama, T. et al. Structure and chromosomal assignment of the human lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) gene. Biochem. J. 339, 177–184 (1999).

    Article  CAS  Google Scholar 

  29. Yan, S., Berquin, I. M., Troen, B. R. & Sloane, B. F. Transcription of human cathepsin B is mediated by Sp1 and Ets family factors in glioma. DNA Cell Biol. 19, 79–91 (2000).

    Article  CAS  Google Scholar 

  30. Cironi, L. et al. IGF1 is a common target gene of Ewing’s sarcoma fusion proteins in mesenchymal progenitor cells. PLoS One 3, e2634 (2008).

    Article  Google Scholar 

  31. He, H. J., Kole, S, Kwon, Y. K., Crow, M. T. & Bernier, M. Interaction of filamin A with the insulin receptor alters insulin-dependent activation of the mitogen-activated protein kinase pathway. J. Biol. Chem. 278, 27096–27104 (2003).

    Article  CAS  Google Scholar 

  32. de Kerchove D’Exaerde, A. et al. Expression of mutant Ets protein at the neuromuscular synapse causes alterations in morphology and gene expression. EMBO Rep. 3, 1075–1081 (2002).

    Article  Google Scholar 

  33. Tomarev, S. I. & Nakaya, N. Olfactomedin domain-containing proteins: possible mechanisms of action and functions in normal development and pathology. Mol. Neurobiol. 40, 122–138 (2009).

    Article  CAS  Google Scholar 

  34. Hollander, M. C., Blumenthal, G. M. & Dennis, P. A. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat. Rev. Cancer 11, 289–301 (2011).

    Article  CAS  Google Scholar 

  35. Rong, Y. et al. Epidermal growth factor receptor and PTEN modulate tissue factor expression in glioblastoma through JunD/activator protein-1 transcriptional activity. Cancer Res. 69, 2540–2549 (2009).

    Article  CAS  Google Scholar 

  36. Vivanco, I. et al. Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell 11, 555–569 (2007).

    Article  CAS  Google Scholar 

  37. Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med. 14, 518–527 (2008).

    Article  CAS  Google Scholar 

  38. Finak, G. et al. Gene expression signatures of morphologically normal breast tissue identify basal-like tumors. Breast Cancer Res. 8, R58 (2006).

    Article  Google Scholar 

  39. Pawitan, Y. et al. Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res. 7, R953–R964 (2005).

    Article  CAS  Google Scholar 

  40. Todaro, G. J. & Green, H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17, 299–313 (1963).

    Article  CAS  Google Scholar 

  41. Hunter, M. P. et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 3, e3694 (2008).

    Article  Google Scholar 

  42. Godlewski, J. et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 68, 9125–9130 (2008).

    Article  CAS  Google Scholar 

  43. Godlewski, J. et al. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol. Cell 37, 620–632 (2010).

    Article  CAS  Google Scholar 

  44. Nowicki, M. O. et al. Lithium inhibits invasion of glioma cells; possible involvement of glycogen synthase kinase-3. Neuro. Oncol. 10, 690–699 (2008).

    Article  CAS  Google Scholar 

  45. Rothhammer, T., Bataille, F., Spruss, T., Eissner, G. & Bosserhoff, A. K. Functional implication of BMP4 expression on angiogenesis in malignant melanoma. Oncogene 26, 4158–4170 (2007).

    Article  CAS  Google Scholar 

  46. Srinivasan, R. et al. Erk1 and Erk2 regulate endothelial cell proliferation and migration during mouse embryonic angiogenesis. PLoS One 4, e8283 (2009).

    Article  Google Scholar 

  47. Chong, J. L. et al. E2f1–3 switch from activators in progenitor cells to repressors in differentiating cells. Nature 462, 930–934 (2009).

    Article  CAS  Google Scholar 

  48. Bronisz, A. et al. Microphthalmia-associated transcription factor interactions with 14-3-3 modulate differentiation of committed myeloid precursors. Mol. Biol. Cell 17, 3897–3906 (2006).

    Article  CAS  Google Scholar 

  49. Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).

    Google Scholar 

Download references

Acknowledgements

We thank Kara Batte for technical assistance with the microRNA platform, Rumeysa Biyik for bioinformatics assistance, Abdel-Rasoul Mahmoud for statistical assistance and the Ohio State University Human Tissue Resource Network and the Ohio State University Comprehensive Cancer Center Microarray, Nucleic Acids, Proteomic Shared Facilities for technical assistance. This work was funded by grants from the National Institutes of Health to M.C.O. (R01CA053271, P01CA097189) and to G.L. (R01CA85619, R01HD47470, P01CA097189) and from the Komen Breast Cancer Foundation and Evelyn Simmers Charitable Trust to M.C.O.

Author information

Authors and Affiliations

Authors

Contributions

M.C.O. and G.L. designed and supervised this study, analysed data and helped write and edit the manuscript. A.B. and J.G. designed and carried out experiments, collected and analysed data and co-wrote the paper. J.A.W., H.M., R.S., A.J.T. and F.L. assisted technically with experiments, and collected and analysed data. M.O.N. assisted with fluorescent and confocal microscopy and immunohistochemistry. L.Y. and S.A.F. contributed to the statistical analyses of data and writing the manuscript. A.S.M., S.C., M.H., M.P. and T.P. contributed to the analysis and comparison of mouse and human profile data. M.G.P. and C.B.M. contributed to the analysis of microRNA data and writing the manuscript. C.K.M., L.D.Y., R.E.J., G.N. and T.J.R. contributed to the histopathological analysis of human samples and writing the manuscript. S.E.L. and E.A.C. contributed to the data analysis and writing the manuscript.

Corresponding authors

Correspondence to G. Leone or M. C. Ostrowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1168 kb)

Supplementary Table 1

Supplementary Information (XLSX 9 kb)

Supplementary Table 2

Supplementary Information (XLSX 8 kb)

Supplementary Table 3

Supplementary Information (XLSX 21 kb)

Supplementary Table 4

Supplementary Information (XLSX 20 kb)

Supplementary Table 5

Supplementary Information (XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronisz, A., Godlewski, J., Wallace, J. et al. Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol 14, 159–167 (2012). https://doi.org/10.1038/ncb2396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2396

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing