Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A supramolecular helix that disregards chirality

Abstract

The functions of complex crystalline systems derived from supramolecular biological and non-biological assemblies typically emerge from homochiral programmed primary structures via first principles involving secondary, tertiary and quaternary structures. In contrast, heterochiral and racemic compounds yield disordered crystals, amorphous solids or liquids. Here, we report the self-assembly of perylene bisimide derivatives in a supramolecular helix that in turn self-organizes in columnar hexagonal crystalline domains regardless of the enantiomeric purity of the perylene bisimide. We show that both homochiral and racemic perylene bisimide compounds, including a mixture of 21 diastereomers that cannot be deracemized at the molecular level, self-organize to form single-handed helical assemblies with identical single-crystal-like order. We propose that this high crystalline order is generated via a cogwheel mechanism that disregards the chirality of the self-assembling building blocks. We anticipate that this mechanism will facilitate access to previously inaccessible complex crystalline systems from racemic and homochiral building blocks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and supramolecular structure of PBI derivatives.
Figure 2: Solution CD and UV–vis experiments.
Figure 3: Thin-film CD and optical polarized microscopy studies.
Figure 4: Oriented fibre XRD.
Figure 5: Model of supramolecular packing in the Φhk1 and Φhk2 phases.
Figure 6: 13C CP-MAS solid-state NMR studies.
Figure 7: Cogwheel model of self-assembly and its role in generating microdomains of single-handed supramolecular columns.

Similar content being viewed by others

References

  1. Frank, P., Bonner, W. A. & Zare, R. N. in Chemistry for the 21st Century (eds Keinan, E. & Schechter, I.) 175–208 (Wiley-VCH, 2000).

    Google Scholar 

  2. Lehn, J.-M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 36, 151–160 (2007).

    CAS  PubMed  Google Scholar 

  3. Hein, J. E., Gherase, D. & Blackmond, D. G. Chemical and physical models for the emergence of biological homochirality. Top. Curr. Chem. 333, 83–108 (2013).

    CAS  PubMed  Google Scholar 

  4. Rowan, A. E. & Nolte, R. J. M. Helical molecular programming. Angew. Chem. Int. Ed. 37, 63–68 (1998).

    CAS  Google Scholar 

  5. Weissbuch, I. & Lahav, M. Crystalline architectures as templates of relevance to the origins of homochirality. Chem. Rev. 111, 3236–3267 (2011).

    CAS  PubMed  Google Scholar 

  6. Pauling, L., Corey, R. B. & Banson, H. R. The structure of proteins: two hydrogen-bonded helical configurations of their polypeptide chain. Proc. Natl Acad. Sci. USA 37, 205–211 (1951).

    CAS  Google Scholar 

  7. Sarko, A. & Marchessault, R. H. The crystal structure of amylose triacetate. A non-integral helix. Science 154, 1658–1659 (1966).

    CAS  Google Scholar 

  8. Natta, G. in Nobel Lectures in Chemistry 1963–1970, 27–60 (World Scientific, 1999).

    Google Scholar 

  9. Natta, G. et al. Crystalline high polymers of α-olefins. J. Am. Chem. Soc. 77, 1708–1710 (1955).

    CAS  Google Scholar 

  10. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    CAS  Google Scholar 

  11. Saito, R., Fujita, H., Dresselhaus, G. & Dresselhaus, M. S. Electronic structure of chiral carbon tubules. Appl. Phys. Lett. 60, 2204–2206 (1992).

    CAS  Google Scholar 

  12. Ebbesen, T. W. et al. Electrical conductivity of individual carbon nanotubes. Nature 382, 54–56 (1996).

    CAS  Google Scholar 

  13. Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    CAS  PubMed  Google Scholar 

  14. Franklin, R. E. & Gosling, R. G. Molecular configuration in sodium thymonucleate. Nature 171, 740–741 (1953).

    CAS  PubMed  Google Scholar 

  15. Klug, A. The discovery of the DNA double helix. J. Mol. Biol. 335, 3–26 (2004).

    CAS  PubMed  Google Scholar 

  16. Pertuz, M. F. in Nobel Lectures, Chemistry 1942–1962 (Elsevier, 1964).

    Google Scholar 

  17. Natta, G. & Corradini, P. The structure of crystalline 1,2-polybutadiene and of other syndiotactic polymers. J. Polym. Sci. 20, 251–266 (1956).

    CAS  Google Scholar 

  18. Pasteur, L. On the relations that can exist between crystalline form, and chemical composition, and the sense of rotary polarization. Ann. Chim. Phys. 24, 442–459 (1848).

    Google Scholar 

  19. Azeroual, S. et al. Mirror symmetry breaking and chiral amplification in foldamer-based supramolecular helical aggregates. Chem. Commun. 48, 2292–2294 (2012).

    CAS  Google Scholar 

  20. Sisco, S. W. & Moore, J. S. Homochiral self-sorting of BINOL macrocycles. Chem. Sci. 5, 81–85 (2014).

    CAS  Google Scholar 

  21. Roche, C. et al. Homochiral columns constructed by chiral self-sorting during supramolecular helical organization of hat-shaped molecules. J. Am. Chem. Soc. 136, 7169–7185 (2014).

    CAS  PubMed  Google Scholar 

  22. González-Campo, A. & Amabilino, D. Biomolecules at interfaces: chiral, naturally. Top. Curr. Chem. 333, 109–156 (2013).

    PubMed  Google Scholar 

  23. Fletcher, S. P., Jagt, R. B. C. & Feringa, B. L. An astrophysically-relevant mechanism for amino acid enantiomer enrichment. Chem. Commun. 43, 2578–2580 (2007).

    Google Scholar 

  24. Sato, K., Itoh, Y. & Aida, T. Homochiral supramolecular polymerization of bowl-shaped chiral macrocycles in solution. Chem. Sci. 5, 136–140 (2014).

    CAS  Google Scholar 

  25. Safont-Sempere, M. M., Fernández, G. & Würthner, F. Self-sorting phenomena in complex supramolecular systems. Chem. Rev. 111, 5784–5814 (2011).

    CAS  PubMed  Google Scholar 

  26. Link, D. R. et al. Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules. Science. 278, 1924–1927 (1997).

    CAS  PubMed  Google Scholar 

  27. Nagayama, H. et al. Spontaneous deracemization of disc-like molecules in the columnar phase. Angew. Chem. Int. Ed. 49, 445–448 (2010).

    CAS  Google Scholar 

  28. Jeong, H. S. et al. Spontaneous chirality induction and enantiomer separation in liquid crystals composed of achiral rod-shaped 4-arylbenzoate esters. J. Am. Chem. Soc. 131, 15055–15060 (2009).

    CAS  PubMed  Google Scholar 

  29. Klug, A. From macromolecules to biological assemblies (Nobel lecture). Angew. Chem. Int. Ed. Engl. 22, 565–582 (1983).

    Google Scholar 

  30. Klug, A. The tobacco mosaic virus particle: structure and assembly. Phil. Trans. R. Soc. Lond. B 354, 531–535 (1999).

    CAS  Google Scholar 

  31. Percec, V. et al. Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature 430, 764–768 (2004).

    CAS  PubMed  Google Scholar 

  32. Rosen, B. M. et al. Programming the supramolecular helical polymerization of dendritic dipeptides via the stereochemical information of the dipeptide. J. Am. Chem. Soc. 133, 5135–5151 (2011).

    CAS  PubMed  Google Scholar 

  33. Percec, V. & Leowanawat, P. Why are biological systems homochiral?. Isr. J. Chem. 51, 1107–1117 (2011).

    CAS  Google Scholar 

  34. Rosen, B. M., Roche, C. & Percec, V. Self-assembly of dendritic dipeptides as a model of chiral selection in primitive biological systems. Top. Curr. Chem. 333, 213–254 (2013).

    CAS  PubMed  Google Scholar 

  35. Dehm, V. et al. Helical growth of semiconducting columnar dye assemblies based on chiral perylene bisimides. Org. Lett. 9, 1085–1088 (2007).

    CAS  PubMed  Google Scholar 

  36. Sanchez-Valencia, J. R. et al. Controlled synthesis of single-chirality carbon nanotubes. Nature 512, 61–64 (2014).

    CAS  PubMed  Google Scholar 

  37. Pokroy, B., Kang, S. H., Mahadevan, L. & Aizenberg, J. Self-organization of a mesoscale bristle into ordered, hierarchical helical assemblies. Science 323, 237–240 (2009).

    CAS  PubMed  Google Scholar 

  38. Percec, V. et al. Controlling polymer shape through the self-assembly of dendritic side-groups. Nature 391, 161–164 (1998).

    CAS  Google Scholar 

  39. Percec, V. et al. Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature 419, 384–387 (2002).

    CAS  PubMed  Google Scholar 

  40. Arias, S., Freire, F., Quiñoá, E. & Riguera, R. Nanospheres, nanotubes, toroids, and gels with controlled macroscopic chirality. Angew. Chem. Int. Ed. 53, 13720–13724 (2014).

    CAS  Google Scholar 

  41. Peterca, M. et al. Molecular structure of helical supramolecular dendrimers. J. Am. Chem. Soc. 130, 14840–14852 (2008).

    CAS  PubMed  Google Scholar 

  42. Percec, V. et al. Transformation from kinetically into thermodynamically controlled self-organization of complex helical columns with 3D periodicity assembled from dendronized perylene bisimides. J. Am. Chem. Soc. 135, 4129–4148 (2013).

    CAS  PubMed  Google Scholar 

  43. Jonkheijm, P., van der Schoot, P., Schenning, A. P. H. J. & Meijer, E. W. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 313, 80–83 (2006).

    CAS  PubMed  Google Scholar 

  44. Percec, V., Ungar, G. & Peterca, M. Self-assembly in action. Science 313, 55–56 (2006).

    PubMed  Google Scholar 

  45. Smulders, M. M. J. et al. How to distinguish isodesmic from cooperative supramolecular polymerisation. Chem. Eur. J. 16, 362–367 (2010).

    CAS  PubMed  Google Scholar 

  46. Van Gestel, J. Amplification of chirality in helical supramolecular polymers: the majority-rules principle. Macromolecules 37, 3894–3898 (2004).

    CAS  Google Scholar 

  47. Green, M. M. et al. Majority rules in the copolymerization of mirror image isomers. J. Am. Chem. Soc. 117, 4181–4182 (1995).

    CAS  Google Scholar 

  48. Van Gestel, J., Palmans, A. R. A., Titulaer, B., Vekemans, J. A. J. M. & Meijer, E. W. ‘Majority-rules’ operative in chiral columnar stacks of C3-symmetrical molecules. J. Am. Chem. Soc. 127, 5490–5494 (2005).

    CAS  PubMed  Google Scholar 

  49. Jin, W. et al. Self-assembled graphitic nanotubes with one-handed helical arrays of a chiral amphiphilic molecular graphene. Proc. Natl Acad. Sci. USA 102, 10801–10806 (2005).

    CAS  PubMed  Google Scholar 

  50. Ungar, G. & Masic, N. Order in the rotator phase of n-alkanes. J. Phys. Chem. 89, 1036–1042 (1985).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Science Foundation (DMR-1066116, DMR-1120901 and OISE-1243313), the Humboldt Foundation and the P. Roy Vagelos Chair at Penn (all to V.P.). G.U. and X.Z. acknowledge support from the joint NSF-EPSRC PIRE project ‘RENEW’ (EPSRC grant EP-K034308). B.E.P. thanks the Howard Hughes Medical Institute for an International Student Research Fellowship. The authors thank I.U. Rehman (University of Sheffield) for recording polarized infrared spectra.

Author information

Authors and Affiliations

Authors

Contributions

C.R., P.L., B.E.P. and D.A.W. synthesized and characterized compounds. C.R., B.E.P., D.A.W. and M.E.P. performed solution-state CD and UV–vis analysis. F.A. performed micro-spot CD analysis. H.-J.S., M.P. and B.E.P. collected and processed X-ray diffraction data. X.Z., H.-J.S., P.A.H. and G.U. generated the molecular model. H.-J.S. and B.E.P. simulated X-ray data. R.G. and H.W.S. performed solid-state NMR analysis. V.P. designed the study. V.P., B.E.P., C.R. and H.-J.S. analysed data and prepared the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Virgil Percec.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 13127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roche, C., Sun, HJ., Leowanawat, P. et al. A supramolecular helix that disregards chirality. Nature Chem 8, 80–89 (2016). https://doi.org/10.1038/nchem.2397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2397

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing