Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A stand-alone adenylation domain forms amide bonds in streptothricin biosynthesis

Abstract

The streptothricin (ST) antibiotics, produced by Streptomyces bacteria, contain L-β-lysine ((3S)-3,6-diaminohexanoic acid) oligopeptides as pendant chains. Here we describe three unusual nonribosomal peptide synthetases (NRPSs) involved in ST biosynthesis: ORF 5 (a stand-alone adenylation (A) domain), ORF 18 (containing thiolation (T) and condensation (C) domains) and ORF 19 (a stand-alone A domain). We demonstrate that ST biosynthesis begins with adenylation of L-β-lysine by ORF 5, followed by transfer to the T domain of ORF 18. In contrast, L-β-lysine molecules adenylated by ORF 19 are used to elongate an L-β-lysine peptide chain on ORF 18, a reaction unexpectedly catalyzed by ORF 19 itself. Finally, the C domain of ORF 18 catalyzes the condensation of L-β-lysine oligopeptides covalently bound to ORF 18 with a freely diffusible intermediate to release the ST products. These results highlight an unusual activity for an A domain and unique mechanisms of crosstalk within NRPS machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures of ST-related compounds.
Figure 2: Products of in vitro enzymatic reactions.
Figure 3: Molecular mass change of rORF 18 after the reactions.
Figure 4: Amide-bond formation catalyzed by rORF 19.
Figure 5: Catalytic mechanisms of ORF 5, ORF 18 and ORF 19.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Waksman, S.A. Production and activity of streptothricin. J. Bacteriol. 46, 299–310 (1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ji, Z., Wang, M., Zhang, J., Wei, S. & Wu, W. Two new members of streptothricin class antibiotics from Streptomyces qinlingensis sp. nov. J. Antibiot. (Tokyo) 60, 739–744 (2007).

    Article  CAS  Google Scholar 

  3. Kusumoto, S., Kambayashi, Y., Imaoka, S., Shima, K. & Shiba, T. Total chemical structure of streptothricin. J. Antibiot. (Tokyo) 35, 925–927 (1982).

    CAS  Google Scholar 

  4. Kusumoto, S., Imaoka, S., Kambayashi, Y. & Shiba, T. Total synthesis of antibiotic streptothricin F. Tetrahedr. Lett. 23, 2961–2964 (1982).

    Article  CAS  Google Scholar 

  5. Hisamoto, M. et al. A-53930A and B, novel N-type Ca2+ channel blockers. J. Antibiot. (Tokyo) 51, 607–617 (1998).

    Article  CAS  Google Scholar 

  6. Goldstein, A.L. & McCusker, J.H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541–1553 (1999).

    Article  CAS  Google Scholar 

  7. Hentges, P., Van Driessche, B., Tafforeau, L., Vandenhaute, J. & Carr, A.M. Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe. Yeast 22, 1013–1019 (2005).

    Article  CAS  Google Scholar 

  8. Shen, J., Guo, W. & Kohler, J.R. CaNAT1, a heterologous dominant selectable marker for transformation of Candida albicans and other pathogenic Candida species. Infect. Immun. 73, 1239–1242 (2005).

    Article  CAS  Google Scholar 

  9. Idnurm, A., Reedy, J.L., Nussbaum, J.C. & Heitman, J. Cryptococcus neoformans virulence gene discovery through insertional mutagenesis. Eukaryot. Cell 3, 420–429 (2004).

    Article  CAS  Google Scholar 

  10. Joshi, P.B., Webb, J.R., Davies, J.E. & McMaster, W.R. The gene encoding streptothricin acetyltransferase (sat) as a selectable marker for Leishmania expression vectors. Gene 156, 145–149 (1995).

    Article  CAS  Google Scholar 

  11. Takemoto, T. et al. Physiological activity of streptothricin antibiotics. Chem. Pharm. Bull. (Tokyo) 28, 2884–2891 (1980).

    Article  CAS  Google Scholar 

  12. Chamberlain, D.A. et al. The use of the Emu promoter with antibiotic and herbicide resistance genes for the selection of transgenic wheat callus and rice plants. Aust. J. Plant Physiol. 21, 95–112 (1994).

    CAS  Google Scholar 

  13. Hoffmann, H. et al. Pharmacokinetics of nourseothricin in laboratory animals. Arch. Exp. Veterinarmed. 40, 699–709 (1986).

    CAS  PubMed  Google Scholar 

  14. Hoffmann, H. et al. Pharmacologic action profile of nourseothricin. Arch. Exp. Veterinarmed. 40, 710–720 (1986).

    CAS  PubMed  Google Scholar 

  15. Härtl, A., Guttner, J., Stockel, U. & Hoffmann, H. Acute and subchronic toxicity of nourseothricin in laboratory animals. Arch. Exp. Veterinarmed. 40, 727–735 (1986).

    PubMed  Google Scholar 

  16. Hamano, Y., Matsuura, N., Kitamura, M. & Takagi, H. A novel enzyme conferring streptothricin resistance alters the toxicity of streptothricin D from broad-spectrum to bacteria-specific. J. Biol. Chem. 281, 16842–16848 (2006).

    Article  CAS  Google Scholar 

  17. Walsh, C. Antibiotics: Action, Origins, Resistance (ASM Press, 2003).

  18. Schwarzer, D., Finking, R. & Marahiel, M.A. Nonribosomal peptides: from genes to products. Nat. Prod. Rep. 20, 275–287 (2003).

    Article  CAS  Google Scholar 

  19. Mootz, H.D., Schwarzer, D. & Marahiel, M.A. Ways of assembling complex natural products on modular nonribosomal peptide synthetases. ChemBioChem 3, 490–504 (2002).

    Article  CAS  Google Scholar 

  20. Marahiel, M.A., Stachelhaus, T. & Mootz, H.D. Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev. 97, 2651–2674 (1997).

    Article  CAS  Google Scholar 

  21. Fernández-Moreno, M.A., Vallin, C. & Malpartida, F. Streptothricin biosynthesis is catalyzed by enzymes related to nonribosomal peptide bond formation. J. Bacteriol. 179, 6929–6936 (1997).

    Article  Google Scholar 

  22. Grammel, N. et al. A β-lysine adenylating enzyme and a β-lysine binding protein involved in poly β-lysine chain assembly in nourseothricin synthesis in Streptomyces noursei. Eur. J. Biochem. 269, 347–357 (2002).

    Article  CAS  Google Scholar 

  23. Rausch, C., Weber, T., Kohlbacher, O., Wohlleben, W. & Huson, D.H. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res. 33, 5799–5808 (2005).

    Article  CAS  Google Scholar 

  24. Zhang, W. et al. Nine enzymes are required for assembly of the pacidamycin group of peptidyl nucleoside antibiotics. J. Am. Chem. Soc. 133, 5240–5243 (2011).

    Article  CAS  Google Scholar 

  25. Steffensky, M., Li, S.M. & Heide, L. Cloning, overexpression, and purification of novobiocic acid synthetase from Streptomyces spheroids NCIMB 11891. J. Biol. Chem. 275, 21754–21760 (2000).

    Article  CAS  Google Scholar 

  26. Schmutz, E. et al. An unusual amide synthetase (CouL) from the coumermycin A1 biosynthetic gene cluster from Streptomyces rishiriensis DSM 40489. Eur. J. Biochem. 270, 4413–4419 (2003).

    Article  CAS  Google Scholar 

  27. Bierman, M. et al. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43–49 (1992).

    Article  CAS  Google Scholar 

  28. Gust, B., Challis, G.L., Fowler, K., Kieser, T. & Chater, K.F. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 100, 1541–1546 (2003).

    Article  CAS  Google Scholar 

  29. Kieser,, T. et al. Practical Streptomyces Genetics (The John Innes Foundation, Norwich, UK, 2000).

Download references

Acknowledgements

We thank N. Iwasaki and J. Seta (Bruker Daltonics K.K.) for assistance with HPLC/Q-TOF MS data collection. Plasmids pKD46 and pCP 20 and E. coli BW25113 were supplied by H. Mori (Nara Institute of Science and Technology). This work was supported, in part, by Grant-in-Aid for Young Scientists (A) (22688007) from the Japan Society for the Promotion of Science (JSPS; to Y.H.), the Industrial Technology Research Grant Program in 2008 from the New Energy and Industrial Technology Development Organization of Japan (to Y.H.) and by Grant-in-Aid for Scientific Research on Innovative Area (23108520) from the JSPS (to Y.H.).

Author information

Authors and Affiliations

Authors

Contributions

C.M., T.U. and Y.H. conceived and designed the experiments; C.M., J.T, Y.K., M.I., M.T., K.S. and H.K. performed the experiments; and C.M. and Y.H. wrote the paper.

Corresponding author

Correspondence to Yoshimitsu Hamano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 3658 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maruyama, C., Toyoda, J., Kato, Y. et al. A stand-alone adenylation domain forms amide bonds in streptothricin biosynthesis. Nat Chem Biol 8, 791–797 (2012). https://doi.org/10.1038/nchembio.1040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1040

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing