Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FERM domain interaction with myosin negatively regulates FAK in cardiomyocyte hypertrophy

Abstract

Focal adhesion kinase (FAK) regulates cellular processes that affect several aspects of development and disease. The FAK N-terminal FERM (4.1 protein–ezrin-radixin-moesin homology) domain, a compact clover-leaf structure, binds partner proteins and mediates intramolecular regulatory interactions. Combined chemical cross-linking coupled to MS, small-angle X-ray scattering, computational docking and mutational analyses showed that the FAK FERM domain has a molecular cleft (998 Å2) that interacts with sarcomeric myosin, resulting in FAK inhibition. Accordingly, mutations in a unique short amino acid sequence of the FERM myosin cleft, FP-1, impaired the interaction with myosin and enhanced FAK activity in cardiomyocytes. An FP-1 decoy peptide selectively inhibited myosin interaction and increased FAK activity, promoting cardiomyocyte hypertrophy through activation of the AKT–mammalian target of rapamycin pathway. Our findings uncover an inhibitory interaction between the FAK FERM domain and sarcomeric myosin that presents potential opportunities to modulate the cardiac hypertrophic response through changes in FAK activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction and regulation of FAK by cardiac myosin in vitro.
Figure 2: FAK-myosin interacting surface determined by CXMS and SAXS.
Figure 3: Mutagenesis of the FERM-myosin complex interface.
Figure 4: FP-1 interacts with sarcomeric myosin and negatively regulates the FAK-myosin interaction in vitro.
Figure 5: FAK interacts with native myosin in cardiomyocytes.
Figure 6: Stretch or treatment with FP-1-TAT inhibits FAK-myosin interaction and induces FAK phosphorylation in NRVMs.
Figure 7: Activation of FAK by treatment with FP-1-TAT induces hypertrophy in NRVMs via the AKT-mTOR signaling pathway.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Mitra, S.K., Hanson, D.A. & Schlaepfer, D.D. Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol. 6, 56–68 (2005).

    Article  CAS  Google Scholar 

  2. Schaller, M.D. Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J. Cell Sci. 123, 1007–1013 (2010).

    Article  CAS  Google Scholar 

  3. Golubovskaya, V.M., Kweh, F.A. & Cance, W.G. Focal adhesion kinase and cancer. Histol. Histopathol. 24, 503–510 (2009).

    CAS  PubMed  Google Scholar 

  4. Peng, X. et al. Cardiac developmental defects and eccentric right ventricular hypertrophy in cardiomyocyte focal adhesion kinase (FAK) conditional knockout mice. Proc. Natl. Acad. Sci. USA 105, 6638–6643 (2008).

    Article  CAS  Google Scholar 

  5. Clemente, C.F. et al. Targeting focal adhesion kinase with small interfering RNA prevents and reverses load-induced cardiac hypertrophy in mice. Circ. Res. 101, 1339–1348 (2007).

    Article  CAS  Google Scholar 

  6. Luo, M. & Guan, J.L. Focal adhesion kinase: a prominent determinant in breast cancer initiation, progression and metastasis. Cancer Lett. 289, 127–139 (2010).

    Article  CAS  Google Scholar 

  7. DiMichele, L.A. et al. Myocyte-restricted focal adhesion kinase deletion attenuates pressure overload-induced hypertrophy. Circ. Res. 99, 636–645 (2006).

    Article  CAS  Google Scholar 

  8. Torsoni, A.S., Constancio, S.S., Nadruz, W. Jr., Hanks, S.K. & Franchini, K.G. Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes. Circ. Res. 93, 140–147 (2003).

    Article  CAS  Google Scholar 

  9. Dunty, J.M. & Schaller, M.D. The N termini of focal adhesion kinase family members regulate substrate phosphorylation, localization, and cell morphology. J. Biol. Chem. 277, 45644–45654 (2002).

    Article  CAS  Google Scholar 

  10. Ceccarelli, D.F., Song, H.K., Poy, F., Schaller, M.D. & Eck, M.J. Crystal structure of the FERM domain of focal adhesion kinase. J. Biol. Chem. 281, 252–259 (2006).

    Article  CAS  Google Scholar 

  11. Lietha, D. et al. Structural basis for the autoinhibition of focal adhesion kinase. Cell 129, 1177–1187 (2007).

    Article  CAS  Google Scholar 

  12. Frame, M.C., Patel, H., Serrels, B., Lietha, D. & Eck, M.J. The FERM domain: organizing the structure and function of FAK. Nat. Rev. Mol. Cell Biol. 11, 802–814 (2010).

    Article  CAS  Google Scholar 

  13. Abbi, S. et al. Regulation of focal adhesion kinase by a novel protein inhibitor FIP200. Mol. Biol. Cell 13, 3178–3191 (2002).

    Article  CAS  Google Scholar 

  14. Parsons, J.T. Focal adhesion kinase: the first ten years. J. Cell Sci. 116, 1409–1416 (2003).

    Article  CAS  Google Scholar 

  15. Schaller, M.D. et al. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol. Cell. Biol. 14, 1680–1688 (1994).

    Article  CAS  Google Scholar 

  16. Xing, Z. et al. Direct interaction of v-Src with the focal adhesion kinase mediated by the Src SH2 domain. Mol. Biol. Cell 5, 413–421 (1994).

    Article  CAS  Google Scholar 

  17. Calalb, M.B., Polte, T.R. & Hanks, S.K. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol. Cell. Biol. 15, 954–963 (1995).

    Article  CAS  Google Scholar 

  18. Kadaré, G. et al. PIAS1-mediated sumoylation of focal adhesion kinase activates its autophosphorylation. J. Biol. Chem. 278, 47434–47440 (2003).

    Article  Google Scholar 

  19. Medley, Q.G. et al. Signaling between focal adhesion kinase and trio. J. Biol. Chem. 278, 13265–13270 (2003).

    Article  CAS  Google Scholar 

  20. Chen, S.Y. & Chen, H.C. Direct interaction of focal adhesion kinase (FAK) with Met is required for FAK to promote hepatocyte growth factor-induced cell invasion. Mol. Cell. Biol. 26, 5155–5167 (2006).

    Article  CAS  Google Scholar 

  21. Serrels, B. et al. Focal adhesion kinase controls actin assembly via a FERM-mediated interaction with the Arp2/3 complex. Nat. Cell Biol. 9, 1046–1056 (2007).

    Article  CAS  Google Scholar 

  22. Pham, C.G. et al. Am. J. Physiol. Heart Circ. Physiol. 279, H2916–H2926 (2000).

    Article  CAS  Google Scholar 

  23. Taylor, J.M., Rovin, J.D. & Parsons, J.T. A role for focal adhesion kinase in phenylephrine-induced hypertrophy of rat ventricular cardiomyocytes. J. Biol. Chem. 275, 19250–19257 (2000).

    Article  CAS  Google Scholar 

  24. Eble, D.M. et al. Endothelin-induced cardiac myocyte hypertrophy: role for focal adhesion kinase. Am. J. Physiol. Heart Circ. Physiol. 278, H1695–H1707 (2000).

    Article  CAS  Google Scholar 

  25. Samarel, A.M. Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am. J. Physiol. Heart Circ. Physiol. 289, H2291–H2301 (2005).

    Article  CAS  Google Scholar 

  26. Fonseca, P.M. et al. Targeting to C-terminal myosin heavy chain may explain mechanotransduction involving focal adhesion kinase in cardiac myocytes. Circ. Res. 96, 73–81 (2005).

    Article  CAS  Google Scholar 

  27. Koch, M.H., Vachette, P. & Svergun, D.I. Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q. Rev. Biophys. 36, 147–227 (2003).

    Article  CAS  Google Scholar 

  28. Inagaki, K., Hahn, H.S., Dorn, G.W. II. & Mochly-Rosen, D. Additive protection of the ischemic heart ex vivo by combined treatment with delta-protein kinase C inhibitor and epsilon-protein kinase C activator. Circulation 108, 869–875 (2003).

    Article  CAS  Google Scholar 

  29. Chen, L. et al. Opposing cardioprotective actions and parallel hypertrophic effects of delta PKC and epsilon PKC. Proc. Natl. Acad. Sci. USA 98, 11114–11119 (2001).

    Article  CAS  Google Scholar 

  30. Marin, T.M. et al. Shp2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/Src and mTOR pathways. Circ. Res. 103, 813–824 (2008).

    Article  CAS  Google Scholar 

  31. Laser, M. et al. Integrin activation and focal complex formation in cardiac hypertrophy. J. Biol. Chem. 275, 35624–35630 (2000).

    Article  CAS  Google Scholar 

  32. Schaller, M.D., Otey, C.A., Hildebrand, J.D. & Parsons, J.T. Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains. J. Cell Biol. 130, 1181–1187 (1995).

    Article  CAS  Google Scholar 

  33. Iglesias, A.H., Santos, L.F. & Gozzo, F.C. Identification of cross-linked peptides by high-resolution precursor ion scan. Anal. Chem. 82, 909–916 (2010).

    Article  CAS  Google Scholar 

  34. Tovchigrechko, A. & Vakser, I.A. GRAMM-X public web server for protein-protein docking. Nucleic Acids Res. 34, W310–W314 (2006).

    Article  CAS  Google Scholar 

  35. Svergun, D.I., Barberato, C. & Koch, M.H.J. CRYSOL—a program to evaluate x-ray solution scattering of biological macromolecule from atomic coordinate. J. Appl. Crystallogr. 28, 768–773 (1995).

    Article  CAS  Google Scholar 

  36. Lanza, D.C. et al. Human FEZ1 has characteristics of a natively unfolded protein and dimerizes in solution. Proteins 74, 104–121 (2009).

    Article  CAS  Google Scholar 

  37. Petoukhov, M.V. & Svergun, D.I. Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophys. J. 89, 1237–1250 (2005).

    Article  CAS  Google Scholar 

  38. Volkov, V.V. & Svergun, D.I. Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 36, 860–864 (2003).

    Article  CAS  Google Scholar 

  39. Kozin, P.V. & Svergun, D.I. Automated matching of high- and low-resolution structural models. J. Appl. Crystallogr. 34, 33–41 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; Grants 2006/54878-3, 2007/55930-1, 2007/59442-1, 2008/53519-5, 2008/57805-2, 2010/02628-9) and Conselho Nacional de Pesquisa (CNPq: Grants 304366/2009-9, 475158/2010-5, 573672/2008-3, 559698/2009-7).

Author information

Authors and Affiliations

Authors

Contributions

A.M.S., D.S. and K.G.F. conceived the research and designed experiments. A.M.S., D.S., A.C.C., M.B.M.P. and T.M.M. conducted experiments. A.M.S. and C.F.M.Z.C. designed and performed mutational experiments. A.M.S. and A.C.M.F. performed affinity experiments. A.M.S., J.C.S. and I.L.T. performed and analyzed SAXS experiments. A.M.S., M.F. and F.C.G. performed crosslinking and MS experiments and analysis. A.M.S., P.S.L.O. and S.H.P.O. performed molecular modeling and docking. A.M.S., D.S., J.X.N. and K.G.F. wrote the paper.

Corresponding author

Correspondence to Kleber G Franchini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 2986 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, A., Schechtman, D., Cardoso, A. et al. FERM domain interaction with myosin negatively regulates FAK in cardiomyocyte hypertrophy. Nat Chem Biol 8, 102–110 (2012). https://doi.org/10.1038/nchembio.717

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.717

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing