Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans

Abstract

In the postgenomic era it has become increasingly apparent that the vast number of predicted biosynthesis genes of microorganisms is not reflected by the metabolic profile observed under standard fermentation conditions. In the absence of a particular (in most cases unknown) trigger these gene loci remain silent. Because these cryptic gene clusters may code for the biosynthesis of important virulence factors, toxins, or even drug candidates, new strategies for their activation are urgently needed to make use of this largely untapped reservoir of potentially bioactive compounds1,2. The discovery of new microbial metabolites through genome mining has proven to be a very promising approach3,4,5,6,7,8,9,10,11,12,13,14,15. Even so, the investigation of silent gene clusters is still a substantial challenge, particularly in fungi16. Here we report a new strategy for the successful induction of a silent metabolic pathway in the important model organism Aspergillus nidulans, which led to the discovery of novel PKS-NRPS hybrid metabolites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organization of the apd gene locus in A. nidulans.
Figure 2: Monitoring the induction of aspyridone biosynthesis.
Figure 3

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Van Lanen, S.G. & Shen, B. Microbial genomics for the improvement of natural product discovery. Curr. Opin. Microbiol. 9, 252–260 (2006).

    Article  CAS  Google Scholar 

  2. Ricke, D.O., Wang, S.W., Cai, R. & Cohen, D. Genomic approaches to drug discovery. Curr. Opin. Chem. Biol. 10, 303–308 (2006).

    Article  CAS  Google Scholar 

  3. Lautru, S., Deeth, R.J., Bailey, L.M. & Challis, G.L. Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat. Chem. Biol. 1, 265–269 (2005).

    Article  CAS  Google Scholar 

  4. Peric-Concha, N. & Long, P.F. Mining the microbial metabolome: a new frontier for natural product lead discovery. Drug Discov. Today 8, 1078–1084 (2003).

    Article  CAS  Google Scholar 

  5. Bode, H.B. & Müller, R. The impact of bacterial genomics on natural product research. Angew. Chem. Int. Ed. 44, 6828–6846 (2005).

    Article  CAS  Google Scholar 

  6. McAlpine, J.B. et al. Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J. Nat. Prod. 68, 493–496 (2005).

    Article  CAS  Google Scholar 

  7. Scherlach, K. & Hertweck, C. Discovery of aspoquinolones A-D, prenylated quinoline-2-one alkaloids from Aspergillus nidulans, motivated by genome mining. Org. Biomol. Chem. 4, 3517–3520 (2006).

    Article  CAS  Google Scholar 

  8. Bok, J.W. et al. Genomic mining for Aspergillus natural products. Chem. Biol. 13, 31–37 (2006).

    Article  CAS  Google Scholar 

  9. Song, L. et al. Type III polyketide synthase β-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. J. Am. Chem. Soc. 128, 14754–14755 (2006).

    Article  CAS  Google Scholar 

  10. Sudek, S., Haygood, M.G., Youssef, D.T. & Schmidt, E.W. Structure of trichamide, a cyclic peptide from the bloom-forming cyanobacterium Trichodesmium erythraeum, predicted from the genome sequence. Appl. Environ. Microbiol. 72, 4382–4387 (2006).

    Article  CAS  Google Scholar 

  11. Banskota, A.H. et al. Isolation and identification of three new 5-alkenyl-3,3(2H)-furanones from two Streptomyces species using a genomic screening approach. J. Antibiot. (Tokyo) 59, 168–176 (2006).

    Article  CAS  Google Scholar 

  12. Banskota, A.H. et al. Genomic analyses lead to novel secondary metabolites. Part 3. ECO-0501, a novel antibacterial of a new class. J. Antibiot. (Tokyo) 59, 533–542 (2006).

    Article  CAS  Google Scholar 

  13. Fazio, G.C., Xu, R. & Matsuda, S.P. Genome mining to identify new plant triterpenoids. J. Am. Chem. Soc. 126, 5678–5679 (2004).

    Article  CAS  Google Scholar 

  14. Wenzel, S.C. et al. Structure and biosynthesis of myxochromides S1–3 in Stigmatella aurantiaca: evidence for an iterative bacterial type I polyketide synthase and for module skipping in nonribosomal peptide biosynthesis. ChemBioChem 6, 375–380 (2005).

    Article  CAS  Google Scholar 

  15. Tohyama, S. et al. Genome-inspired search for new antibiotics. Isolation and structure determination of new 28-membered polyketide macrolactones, halstoctacosanolides A and B, from Streptomyces halstedii HC34. Tetrahedron 60, 3999–4005 (2004).

    Article  CAS  Google Scholar 

  16. Schümann, J. & Hertweck, C. Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes. J. Biotechnol. 124, 690–703 (2006).

    Article  Google Scholar 

  17. Galagan, J.E. et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438, 1105–1115 (2005).

    Article  CAS  Google Scholar 

  18. Sims, J.W., Fillmore, J.P., Warner, D.D. & Schmidt, E.W. Equisetin biosynthesis in Fusarium heterosporum. Chem. Commun. (Camb.) 186–188 (2005).

  19. Song, Z., Cox, R.J., Lazarus, C.M. & Simpson, T.J. Fusarin C biosynthesis in Fusarium moniliforme and Fusarium venenatum. ChemBioChem 5, 1196–1203 (2004).

    Article  CAS  Google Scholar 

  20. Dean, R.A. et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980–986 (2005).

    Article  CAS  Google Scholar 

  21. Bohnert, H.U. et al. A putative polyketide synthase peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 16, 2499–2513 (2004).

    Article  Google Scholar 

  22. Gaffoor, I. et al. Functional analysis of the polyketide synthase genes in the filamentous fungus Gibberella zeae (Anamorph Fusarium graminearum). Eukaryot. Cell 4, 1926–1933 (2005).

    Article  CAS  Google Scholar 

  23. Kennedy, J. et al. Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284, 1368–1372 (1999).

    Article  CAS  Google Scholar 

  24. Waring, R.B., May, G.S. & Morris, N.R. Characterization of an inducible expression system in Aspergillus nidulans using alcA and tubulin-coding genes. Gene 79, 119–130 (1989).

    Article  CAS  Google Scholar 

  25. Stahl, M., Schopfer, U., Frenking, G. & Hoffmann, W. Assignment of relative configuration to acyclic compounds based on 13C NMR shifts. A density functional and molecular mechanics study. J. Org. Chem. 61, 8083–8088 (1996).

    Article  CAS  Google Scholar 

  26. Clark, A.J. & Ellard, J.M. Synthesis of the C9–C25 fragment of L-755,807. Evidence for the relative configuration of the side chain. Tetrahedron Lett. 39, 6033–6036 (1998).

    Article  CAS  Google Scholar 

  27. Schmidt, K., Riese, U., Li, Z. & Hamburger, M. Novel tetramic acids and pyridone alkaloids, militarinones B, C, and D, from the insect pathogenic fungus Paecilomyces militaris. J. Nat. Prod. 66, 378–383 (2003).

    Article  CAS  Google Scholar 

  28. McInnes, A.G., Smith, D.G., Wat, C.K., Vining, L.C. & Wright, J.L.C. Tenellin and bassianin, metabolites of Beauveria species - structure elucidation with N-15-enriched and doubly C-13-enriched compounds using C-13 nuclear magnetic-resonance spectroscopy. J. Chem. Soc. Chem. Commun. 281–282 (1974).

  29. Cheng, Y. et al. Farinosones A-C, neurotrophic alkaloidal metabolites from the entomogenous deuteromycete Paecilomyces farinosus. J. Nat. Prod. 67, 1854–1858 (2004).

    Article  CAS  Google Scholar 

  30. Moore, M.C., Cox, R.J., Duffin, G.R. & O'Hagan, D. Synthesis and evaluation of a putative acyl tetramic acid intermediate in tenellin biosynthesis in Beauveria bassiana. A new role for tyrosine. Tetrahedron 54, 9195–9206 (1998).

    Article  CAS  Google Scholar 

  31. Fujita, Y., Oguri, H. & Oikawa, H. Biosynthetic studies on the antibiotics PF1140: a novel pathway for a 2-pyridone framework. Tetrahedron Lett. 46, 5885–5888 (2005).

    Article  CAS  Google Scholar 

  32. Lang, G., Blunt, J.W., Cummings, N.J., Cole, A.L. & Munro, M.H.G. Paecilosetin, a new bioactive fungal metabolite from a New Zealand isolate of Paecilomyces farinosus. J. Nat. Prod. 68, 810–811 (2005).

    Article  CAS  Google Scholar 

  33. Eley, K.L. et al. Biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana. Chembiochem 8, 289–297 (2007).

    Article  CAS  Google Scholar 

  34. Herrmann, M., Sprote, P. & Brakhage, A.A. Protein kinase C (PkcA) of Aspergillus nidulans is involved in the penicillin production. Appl. Environ. Microbiol. 72, 2957–2970 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Perner for MS and HPLC/MS measurements, F.A. Gollmick for NMR measurements, and M.-G. Schwinger for strain cultivation. Financial support by the Leibniz Gemeinschaft, the Deutsche Forschungsgemeinschaft and the European Union (Euketides network) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

S.B. and J.S. carried out the molecular studies; K.S. and C.L. performed structural elucidation; A.B. and C.H. designed the experiments and wrote the article.

Corresponding author

Correspondence to Christian Hertweck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Gene expression profiling by northern blot analysis. (PDF 179 kb)

Supplementary Fig. 2

One-dimensional and two-dimensional NMR spectra of aspyridone A and HPLC profile. (PDF 138 kb)

Supplementary Table 1

Proposed functions of the apd gene products. (PDF 105 kb)

Supplementary Table 2

Bacterial and fungal strains and plasmids used in this study. (PDF 53 kb)

Supplementary Table 3

Oligonucleotides used in this study. (PDF 10 kb)

Supplementary Methods (PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergmann, S., Schümann, J., Scherlach, K. et al. Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3, 213–217 (2007). https://doi.org/10.1038/nchembio869

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio869

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing