Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observed heavy precipitation increase confirms theory and early models

Abstract

Environmental phenomena are often observed first, and then explained quantitatively. The complexity of processes, the range of scales involved, and the lack of first principles make it challenging to predict conditions beyond the ones observed. Here we use the intensification of heavy precipitation as a counterexample, where seemingly complex and potentially computationally intractable processes manifest themselves to first order in simple ways: heavy precipitation intensification is now emerging in the observed record across many regions of the world, confirming both theory and model predictions made decades ago. As the anthropogenic climate signal strengthens, there will be more opportunities to test climate predictions for other variables against observations and across a hierarchy of different models and theoretical concepts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heavy rainfall intensification in theory and very coarse GCMs.
Figure 2: Heavy rainfall intensification in observations and most recent model generations.

Similar content being viewed by others

References

  1. Trenberth, K. E. Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change 42, 327–339 (1999).

    Article  Google Scholar 

  2. Hennessy, K. J., Gregory, J. M. & Mitchell, J. F. B. Changes in daily precipitation under enhanced greenhouse conditions. Clim. Dynam. 13, 667–680 (1997).

    Article  Google Scholar 

  3. Schmidt, G. A., Shindell, D. T. & Tsigaridis, K. Reconciling warming trends. Nat. Geosci. 7, 158–160 (2014).

    Article  CAS  Google Scholar 

  4. Huber, M. & Knutti, R. Natural variability, radiative forcing and climate response in the recent hiatus reconciled. Nat. Geosci. 7, 651–656 (2014).

    Article  CAS  Google Scholar 

  5. Clapeyron, E. Mémoire sur la puissance motrice de la chaleur. J. l'École Polytechnique XXIIIe Cahier, Tome XIV 153–191 (1834).

  6. Clausius, R. Über die bewegende kraft der wärme und die gesetze, welche sich daraus für die wärmelehre selbst ableiten lassen. Ann. Phys. (Berlin) 155, 368–397 (1850).

    Article  Google Scholar 

  7. Manabe, S. & Wetherald, R. T. The effects of doubling the CO2 concentration on the climate of a General Circulation Model. J. Atmos. Sci. 32, 3–15 (1975).

    Article  CAS  Google Scholar 

  8. Noda, A. & Tokioka, T. The effect of doubling the CO2 concentration on convective and non-convective precipitation in a general-circulation model coupled with a simple mixed layer ocean model. J. Meteor. Soc. Japan 67, 1057–1069 (1989).

    Article  Google Scholar 

  9. Fowler, A. M. & Hennessy, K. J. Potential impacts of global warming on the frequency and magnitude of heavy precipitation. Natural Hazards 11, 283–303 (1995).

    Article  Google Scholar 

  10. Gordon, H. B., Whetton, P. H., Pittock, A. B., Fowler, A. M. & Haylock, M. R. Simulated changes in daily rainfall intensity due to the enhanced greenhouse effect: implications for extreme rainfall events. Clim. Dynam. 8, 83–102 (1992).

    Article  Google Scholar 

  11. Whetton, P. H., Fowler, A. M., Haylock, M. R. & Pittock, A. B. Implications of climate change due to the enhanced greenhouse effect on floods and droughts in Australia. Climatic Change 25, 289–317 (1993).

    Article  Google Scholar 

  12. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Google Scholar 

  13. Hansen. J. et al. Global climate changes as forecast by Goddard Institute for space studies 3-dimensional model. J. Geophys. Res. Atmos. 93, 9341–9364 (1988).

    Article  CAS  Google Scholar 

  14. Wetherald, R. T. & Manabe, S. Cloud feedback processes in a general-circulation model. J. Atmos. Sci. 45, 1397–1415 (1988).

    Article  Google Scholar 

  15. Iwashima, T. & Yamamoto, R. A statistical analysis of the extreme events: long-term trend of heavy daily precipitation. J. Meteor. Soc. Japan. 71, 637–640 (1993).

    Article  Google Scholar 

  16. IPCC Climate Change 1995: The Science of Climate Change (eds Houghton, J. T. et al.) (Cambridge Univ. Press, 1996).

  17. Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  18. Alexander, L. V. Global observed long-term changes in temperature and precipitation extremes: a review of progress and limitations in IPCC assessments and beyond. Weather Clim. Extremes 11, 4–16 (2016).

    Article  Google Scholar 

  19. Kunkel, K. E. & Frankson, R. M. Global land surface extremes of precipitation: data limitations and trends. J. Extreme Events 2, 1550004 (2015).

    Article  Google Scholar 

  20. Westra. S., Alexander, L. V. & Zwiers, F. W. Global increasing trends in annual maximum daily precipitation. J. Clim. 26, 3904–3918 (2013).

    Article  Google Scholar 

  21. Donat, M. G., Lowry, A. L., Alexander, L. V., O'Gorman, P. A. & Maher N. More extreme precipitation in the world's dry and wet regions. Nat. Clim. Change 6, 508–513 (2016).

    Article  Google Scholar 

  22. Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmos. 113, D20119 (2008).

    Article  Google Scholar 

  23. Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5, 560–564 (2015).

    Article  Google Scholar 

  24. Jones, C., Giorgi, F. & Asrar, G. The coordinated regional downscaling experiment: CORDEX–an international downscaling link to CMIP5. Clivar Exchanges 16, 34–40 (2011).

    Google Scholar 

  25. Kotlarski, S. et al. Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 7, 1297–1333 (2014).

    Article  Google Scholar 

  26. Min, S.-K., Zhang, X., Zwiers, F. W. & Hegerl, G. C. Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011).

    Article  CAS  Google Scholar 

  27. Zhang, X., Wan, H., Zwiers, F. W., Hegerl, G. C. & Min, S.-K. Attributing intensification of precipitation extremes to human influence. Geophys. Res. Lett. 40, 5252–5257 (2013).

    Article  Google Scholar 

  28. Fischer, E. M. & Knutti, R. Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett. 41, 547–554 (2014).

    Article  Google Scholar 

  29. Kopparla, P., Fischer, E. M., Hannay, C. & Knutti, R. Improved simulation of extreme precipitation in a high-resolution atmosphere model. Geophys. Res. Lett. 40, 5803–5808 (2013).

    Article  Google Scholar 

  30. Rajczak, J., Pall, P. & Schär, C. Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine region. J. Geophys. Res. Atmos. 118, 3610–3626 (2013).

    Article  Google Scholar 

  31. Giorgi, F. et al. Enhanced summer convective rainfall at Alpine high elevations in response to climate warming. Nat. Geosci. 9, 584–589 (2016).

    Article  CAS  Google Scholar 

  32. Westra, S. & Sisson, S. A. Detection of non-stationarity in precipitation extremes using a max-stable process model. J. Hydrol. 406, 119–128 (2011).

    Article  Google Scholar 

  33. Utsumi, N., Seto, S., Kanae, S., Maeda, E. E. & Oki, T. Does higher surface temperature intensify extreme precipitation? Geophys. Res. Lett. 38, L16708 (2011).

    Article  Google Scholar 

  34. O'Gorman, P. A. Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci. 5, 697–700 (2012).

    Article  CAS  Google Scholar 

  35. Catto, J. L. & Pfahl, S. The importance of fronts for extreme precipitation. J. Geophys. Res. Atmos. 118, 10791–10801 (2013).

    Article  Google Scholar 

  36. Pfahl, S. & Wernli, H. Quantifying the relevance of cyclones for precipitation extremes. J. Clim. 25, 6770–6780 (2012).

    Article  Google Scholar 

  37. Schaller, N. et al. Human influence on climate in the 2014 southern England winter floods and their impacts. Nat. Clim. Change 6, 627–634 (2016).

    Article  Google Scholar 

  38. Pendergrass, A. G. & Hartmann, D. L. Two modes of change of the distribution of rain. J. Clim. 27, 8357–8371 (2014).

    Article  Google Scholar 

  39. Pendergrass, A. G. & Hartmann, D. L. Changes in the distribution of rain frequency and intensity in response to global warming. J. Clim. 27, 8372–8383 (2014).

    Article  Google Scholar 

  40. O'Gorman, P. A. & Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl Acad. Sci. USA 106, 14773–14777 (2009).

    Article  Google Scholar 

  41. Kharin, V., Zwiers, F., Zhang, X. & Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change 119, 345–357 (2013).

    Article  Google Scholar 

  42. Fischer, E. M., Sedlacek, J., Hawkins, E. & Knutti, R. Models agree on forced response pattern of precipitation and temperature extremes. Geophys. Res. Lett. 41, 8554–8562 (2014).

    Article  Google Scholar 

  43. O'Gorman, P. A. & Schneider, T. Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J. Clim. 22, 5676–5685 (2009).

    Article  Google Scholar 

  44. O'Gorman, P. A. Precipitation extremes under climate change. Curr. Clim. Change Rep. 1, 49–59 (2015).

    Article  Google Scholar 

  45. Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003).

    Article  Google Scholar 

  46. Allan, R. & Soden, B. Atmospheric warming and the amplification of precipitation extremes. Science 321, 1481–1484 (2008).

    Article  CAS  Google Scholar 

  47. Frei, C., Schär, C., Lüthi, D. & Davies, H. C. Heavy precipitation processes in a warmer climate. Geophys. Res. Lett. 25, 1431–1434 (1998).

    Article  CAS  Google Scholar 

  48. Chavaillaz, Y., Joussaume, S., Bony, S. & Braconnot, P. Spatial stabilization and intensification of moistening and drying rate patterns under future climate change. Clim. Dynam. 47, 951–965 (2015).

    Article  Google Scholar 

  49. Pendergrass, A. G., Lehner, F., Sanderson, B. M. & Xu, Y. Does extreme precipitation intensity depend on the emissions scenario? Geophys. Res. Lett. 42, 8767–8774 (2015).

    Article  Google Scholar 

  50. Lenderink, G. & Attema, J. A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands. Environ. Res. Lett. 085001 (2015).

  51. Rajczak. J., Pall, P. & Schär, C. Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region. J. Geophys. Res. Atmos. 118, 3610–3626 (2013).

    Article  Google Scholar 

  52. Kendon, E. J. et al. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Change 4, 570–576 (2014).

    Article  Google Scholar 

  53. Lenderink, G. & van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 1, 511–514 (2008).

    Article  CAS  Google Scholar 

  54. Westra, S. et al. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 52, 522–555 (2014).

    Article  Google Scholar 

  55. Berg, P., Moseley, C. & Haerter, J. O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 6, 181–185 (2013).

    Article  CAS  Google Scholar 

  56. Lenderink, G. et al. Preparing local climate change scenarios for the Netherlands using resampling of climate model output. Environ. Res. Lett. 115008 (2014).

  57. Zwiers, F. W. et al. in Climate Science for Serving Society (eds Asrar, G. R. & Hurrell, J. W.) Ch. 13, 339–389 (Springer, 2013).

    Book  Google Scholar 

  58. Shepherd, T. G. A common framework for approaches to extreme event attribution. Curr. Clim. Change Rep. 2, 28–38 (2016).

    Article  Google Scholar 

  59. Trenberth, K. E., Fasullo, J. T. & Shepherd, T.G. Attribution of climate extreme events. Nat. Clim. Change 5, 725–730 (2015).

    Article  Google Scholar 

  60. Martius, O. et al. The role of upper-level dynamics and surface processes for the Pakistan flood of July 2010. Q. J. Roy. Meteorol. Soc. 139, 1780–1797 (2013).

    Article  Google Scholar 

  61. Prein, A. F. et al. A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev. Geophys. 53, 323–361 (2015).

    Article  Google Scholar 

  62. Chan, S. C., Kendon, E. J., Fowler, H. J., Blenkinsop, S. & Roberts, N. M. Projected increases in summer and winter UK sub-daily precipitation extremes from high-resolution regional climate models. Environ. Res. Lett. 9, 084019 (2014).

    Article  Google Scholar 

  63. Chan, S. C., Kendon, E. J., Roberts, N. M., Fowler, H. J. & Blenkinsop, S. Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nat. Geosci. 9, 24–28 (2015).

    Article  CAS  Google Scholar 

  64. Ban, N., Schmidli, J. & Schär, C. Heavy precipitation in a changing climate: does short-term summer precipitation increase faster? Geophys. Res. Lett. 42, 1165–1172 (2015).

    Article  Google Scholar 

  65. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2014).

  66. Knutti, R., Masson, D. & Gettelman, A. Climate model genealogy: generation CMIP5 and how we got there. Geophys. Res. Lett. 40, 1194–1199 (2013).

    Article  Google Scholar 

  67. Knutti, R. & Sedlacek, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Change 3, 369–373 (2013).

    Article  Google Scholar 

  68. Knutti, R. The end of model democracy? Climatic Change 102, 395–404 (2010).

    Article  Google Scholar 

  69. Arrhenius, S. On the influence of carbonic acid in the air upon the temperature of the ground. London Edinburgh Dublin Phil. Mag. J. Sci. 41, 237–276 (1896).

    Article  CAS  Google Scholar 

  70. Hansen, J. et al. in Climate Processes and Climate Sensitivity (eds Hansen, J. E. & Takahash, T.) 130–163 (AGU Geophysical Monograph, 1984).

    Book  Google Scholar 

  71. Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 10 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  72. Hansen, J. et al. Climate impact of increasing atmospheric carbon dioxide. Science 213, 957–966 (1981).

    Article  CAS  Google Scholar 

  73. Hansen, J. et al. Climate response times: dependence on climate sensitivity and ocean mixing. Science 229, 857–859 (1985).

    Article  CAS  Google Scholar 

  74. Siegenthaler, U. & Oeschger, H. Transient temperature changes due to increasing CO2 using simple models. Ann. Glaciol. 5, 153–159 (1984).

    Article  Google Scholar 

  75. Cess, R. D. & Goldenberg, S. D. The effect of ocean heat capacity upon global warming due to increasing atmospheric carbon dioxide. J. Geophys. Res. Oceans 86, 498–502 (1981).

    Article  Google Scholar 

  76. Schlesinger, M. E. Equilibrium and transient climatic warming induced by increased atmospheric CO2 . Clim. Dynam. 1, 35–51 (1986).

    Article  Google Scholar 

  77. Levitus, S., Antonov, J. I., Boyer, T. P. & Stephens, C. Warming of the world ocean. Science 287, 2225–2229 (2000).

    Article  CAS  Google Scholar 

  78. Barnett, T.P., Pierce, D. W. & Schnur, R. Detection of anthropogenic climate change in the world's oceans. Science 292, 270–274 (2001).

    Article  CAS  Google Scholar 

  79. Levitus, S. et al. Anthropogenic warming of Earth's climate system. Science 292, 267–270 (2001).

    Article  CAS  Google Scholar 

  80. Lyman, J. M., Willis, J. K. & Johnson, G. C. Recent cooling of the upper ocean. Geophys. Res. Lett. L18604 (2006).

  81. AchutaRao, K. M. et al. Variability of ocean heat uptake: reconciling observations and models. J. Geophys. Res. Oceans C05019 (2006).

  82. Gregory, J., Banks, H., Stott, P., Lowe, J. & Palmer, M. Simulated and observed decadal variability in ocean heat content. Geophys. Res. Lett. L15312 (2004).

  83. Gouretski, V. & Koltermann, K. P. How much is the ocean really warming? Geophys. Res. Lett. L01610 (2007).

  84. Wijffels, S. E. et al. Changing expendable bathythermograph fall rates and their impact on estimates of thermosteric sea level rise. J. Clim. 21, 5657–5672 (2008).

    Article  Google Scholar 

  85. Domingues, C. M. et al. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453, 1090–1096 (2008).

    Article  CAS  Google Scholar 

  86. Church, J. A. et al. Revisiting the Earth's sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. L18601 (2011).

  87. Lyman, J. M. et al. Robust warming of the global upper ocean. Nature 465, 334–337 (2010).

    Article  CAS  Google Scholar 

  88. Abraham, J. P. et al. A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev. Geophys. 51, 450–483 (2013).

    Article  Google Scholar 

  89. Thompson, D. W. J., Wallace, J. M., Kennedy, J. J. & Jones, P. D. An abrupt drop in Northern Hemisphere sea surface temperature around 1970. Nature 467, 444–447 (2010).

    Article  CAS  Google Scholar 

  90. Mears, C. A. & Wentz, F. J. The effect of diurnal correction on satellite-derived lower tropospheric temperature. Science 309, 1548–1551 (2005).

    Article  CAS  Google Scholar 

  91. Santer, B. D. et al. Amplification of surface temperature trends and variability in the tropical atmosphere. Science 309, 1551–1556 (2005).

    Article  CAS  Google Scholar 

  92. Allen, R. J. & Sherwood, S. C. Warming maximum in the tropical upper troposphere deduced from thermal winds. Nat. Geosci. 1, 399–403 (2008).

    Article  CAS  Google Scholar 

  93. Sherwood, S. C., Lanzante, J. R. & Meyer, C. L. Radiosonde daytime biases and late-20th century warming. Science 309, 1556–1559 (2005).

    Article  CAS  Google Scholar 

  94. Masson, D. & Knutti, R. Climate model genealogy. Geophys. Res. Lett. L08703 (2011).

  95. Rauser, F., Gleckler, P. & Marotzke, J. Rethinking the default construction of multi-model climate ensembles. Bull. Am. Meteorol. Soc. 96, 911–919 (2014).

    Article  Google Scholar 

  96. Hall, A. & Qu, X. Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett. L03502 (2006).

  97. Bitz, C. & Fu, Q. Arctic warming aloft is data set dependent. Nature 455, E3–E4 (2008).

    Article  CAS  Google Scholar 

  98. Palmer, T., Doblas-Reyes, F., Weisheimer, A. & Rodwell, M. Toward seamless prediction: calibration of climate change projections using seasonal forecasts. Bull. Am. Meteorol. Soc. 89, 459–470 (2008).

    Article  Google Scholar 

  99. Held, I. Simplicity amid Complexity. Science 343, 1206–1207 (2014).

    Article  CAS  Google Scholar 

  100. Schär, C. et al. Percentile indices for assessing changes in heavy precipitation events. Climatic Change 137, 201–216 (2016).

    Article  Google Scholar 

  101. Zhang, X. B., Hegerl, G., Zwiers, F. W. & Kenyon, J. Avoiding inhomogeneity in percentile-based indices of temperature extremes. J. Clim. 18, 1641–1651 (2005).

    Article  Google Scholar 

  102. Hofstra, N., New, M. & McSweeney, C. The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Clim. Dynam. 35, 841–858 (2010).

    Article  Google Scholar 

  103. Thomas R. et al. (eds) Weather and Climate Extremes in a Changing Climate. Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands (CCSP, 2008).

    Google Scholar 

  104. Cubasch, U. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 1 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling and the Working Group on Regional Climate, which are responsible for CMIP and EURO-CORDEX, and we thank the climate modeling groups (see Supplementary Table 1) for producing and making available their model output. For CMIP the US Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Contributions

E.M.F analysed the data and produced the figures. Both authors jointly wrote the paper.

Corresponding author

Correspondence to E. M. Fischer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Data and Methods (PDF 464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, E., Knutti, R. Observed heavy precipitation increase confirms theory and early models. Nature Clim Change 6, 986–991 (2016). https://doi.org/10.1038/nclimate3110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing