Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A primer on recurrent and de novo glomerulonephritis in renal allografts

Abstract

Accumulating evidence indicates that recurrent glomerulonephritis is the third most important cause of renal allograft loss at 10 years after transplantation. The proteinuria and elevated serum creatinine levels that result from recurrent glomerulonephritis are associated with cardiovascular morbidity and mortality. The exact prevalence of either recurrent or de novo post-transplantation glomerulonephritis is unknown because a considerable number of patients never undergo allograft biopsy, meaning that glomerulonephritis remains undiagnosed and a diagnosis of 'chronic rejection/chronic allograft nephropathy' is sometimes presumed. The lack of consensus regarding evaluation of kidney transplant recipients who exhibit slow deterioration of graft function is a major reason for underdiagnosis. All forms of glomerular disease can recur after transplantation, but the likelihood of recurrence differs according to type. Focal segmental glomerulosclerosis, membranoproliferative glomerulonephritis, IgA nephropathy and idiopathic diarrhea-negative hemolytic uremic syndrome often recur. Membranous nephropathy, focal segmental glomerulosclerosis, anti-glomerular basement membrane nephritis associated with Alport syndrome, and drug-induced thrombotic microangiopathy are the most common forms of de novo glomerulonephritis. This Review discusses the prevalence, risk factors, pathogenesis, clinicopathological features, and effects on graft outcome of recurrent and de novo glomerulonephritis in renal allografts. Treatment options are briefly outlined.

Key Points

  • Approximately 40% of kidney transplant recipients develop clinically relevant proteinuria; the most common cause is 'chronic rejection/chronic allograft nephropathy', with post-transplantation glomerulonephritis and calcineurin-inhibitor toxicity being the second most common causes

  • Glomerulonephritis is considered recurrent when the form that affected the native kidney recurs in the transplanted kidney; de novo (new-onset) glomerulonephritis is that which occurs in a transplant recipient whose original kidney disease was either not glomerular or was of a different pathological type

  • Recurrent and de novo post-transplantation glomerulonephritis have the same pathological features as disease that occurs in the native kidney but frequently coexist with glomerular manifestations of acute or chronic rejection

  • The prevalence of post-transplantation glomerulonephritis is not precisely known, mainly because of incomplete examination of graft biopsy samples and the lack of consensus regarding investigation of late allograft dysfunction

  • Focal segmental glomerulosclerosis, membranoproliferative glomerulonephritis, IgA nephropathy and idiopathic diarrhea-negative hemolytic uremic syndrome recur frequently after transplantation; membranous nephropathy, focal segmental glomerulosclerosis, anti-glomerular basement membrane nephritis in patients with Alport syndrome, and drug-induced thrombotic microangiopathy are the most common de novo diseases

  • Differential diagnoses and risk factors for recurrence of glomerulonephritis after transplantation need to be better defined in order to enable prompt diagnosis and treatment; multicenter studies on the optimum treatment strategies are also needed

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recurrent post-transplantation focal segmental glomerulosclerosis, cellular variant (semithin plastic section, methylene blue staining, original magnification ×100).
Figure 2: De novo post-transplantation membranous nephropathy (stage III) and transplant glomerulopathy.
Figure 3: Protocol biopsy sample obtained 3 months after transplantation, showing recurrent IgA nephropathy.
Figure 4: Biopsy sample obtained 13 weeks after transplantation, showing thrombotic microangiopathy of obscure origin.

Similar content being viewed by others

References

  1. Yakupoglu U et al. (2004) Post-transplant nephrotic syndrome: a comprehensive clinicopathologic study. Kidney Int 65: 2360–2370

    Article  Google Scholar 

  2. Chung J et al. (2000) Glomerulonephritis is the major cause of proteinuria in renal transplant recipients: histopathologic findings of renal allografts with proteinuria. Clin Transplant 14: 499–504

    Article  CAS  Google Scholar 

  3. Suzuki H et al. (2003) Incidence of latent mesangial IgA deposition in renal allograft donors in Japan. Kidney Int 63: 2286–2294

    Article  Google Scholar 

  4. Moriyama T et al. (2005) Latent IgA deposition from donor kidney is the major risk factor for recurrent IgA nephropathy in renal transplantation. Clin Transplant 19 (Suppl 14): S41–S48

    Article  Google Scholar 

  5. Schwartzman MS et al. (2005) Transplantation and 6-month follow-up of renal transplantation from a donor with systemic lupus erythematosus and lupus nephritis. Am J Transplant 5: 1772–1776

    Article  Google Scholar 

  6. Briggs JD and Jones E (1999) Recurrence of glomerulonephritis following renal transplantation. Nephrol Dial Transplant 14: 564–565

    Article  CAS  Google Scholar 

  7. Chadban S (2001) Glomerulonephritis recurrence in the renal graft. J Am Soc Nephrol 12: 394–402

    CAS  PubMed  Google Scholar 

  8. Hariharan S et al. (1998) Recurrent and de novo renal diseases after renal transplantation: a report from the Renal Allograft Disease Registry. Am J Kidney Dis 31: 928–931

    Article  CAS  Google Scholar 

  9. Hariharan S et al. (1999) Recurrent and de novo glomerular disease after renal transplantation: a report from Renal Allograft Disease Registry (RADR). Transplantation 68: 635–641

    Article  CAS  Google Scholar 

  10. Briganti EM et al. (2002) Risk of renal allograft loss from recurrent glomerulonephritis. N Engl J Med 347: 103–109

    Article  Google Scholar 

  11. Nankivell BJ et al. (2004) Evolution and pathophysiology of renal-transplant glomerulosclerosis. Transplantation 78: 461–468

    Article  Google Scholar 

  12. Ibrahim H et al. (2006) Graft loss from recurrent glomerulonephritis is not increased with a rapid steroid discontinuation protocol. Transplantation 81: 214–219

    Article  Google Scholar 

  13. Morozumi K et al. (2004) Cyclosporine nephrotoxicity: how does it affect renal allograft function and transplant morphology? Transplant Proc 36 (Suppl 2): 251S–256S

    Article  CAS  Google Scholar 

  14. Cosio FG et al. (1999) Focal segmental glomerulosclerosis in renal allografts with chronic nephropathy: implications for graft survival. Am J Kidney Dis 34: 731–738

    Article  CAS  Google Scholar 

  15. Zimmerman S (1984) Increased urinary protein excretion in the rat produced by serum from a patient with recurrent focal glomerular sclerosis after renal transplantation. Clin Nephrol 22: 32–38

    CAS  PubMed  Google Scholar 

  16. Sharma M et al. (2002) Proteinuria after injection of human focal segmental glomerulosclerosis factor. Transplantation 73: 366–372

    Article  Google Scholar 

  17. Musante L et al. (2002) Characterization of plasma factors that alter the permeability to albumin within isolated glomeruli. Proteomics 2: 197–205

    Article  CAS  Google Scholar 

  18. Coward RJ et al. (2005) Nephrotic plasma alters slit diaphragm-dependent signaling and translocates nephrin, podocin, and CD2 associated protein in cultured human podocytes. J Am Soc Nephrol 16: 629–637

    Article  CAS  Google Scholar 

  19. Caridi G et al. (2003) Broadening the spectrum of diseases related to podocin mutations. J Am Soc Nephrol 14: 1278–1286

    Article  CAS  Google Scholar 

  20. Caridi G et al. (2003) Podocin mutations in sporadic focal-segmental glomerulosclerosis occurring in adulthood. Kidney Int 64: 365

    Article  CAS  Google Scholar 

  21. Ruf R et al. (2004) Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J Am Soc Nephrol 15: 722–732

    Article  Google Scholar 

  22. Weber S et al. (2004) NPHS2 mutation analysis shows genetic heterogeneity of steroid-resistant nephrotic syndrome and low post-transplant recurrence. Kidney Int 66: 571–579

    Article  CAS  Google Scholar 

  23. Carraro M et al. (2002) Serum glomerular permeability activity in patients with podocin mutations (NPHS2) and steroid-resistant nephrotic syndrome. J Am Soc Nephrol 13: 1946–1952

    Article  CAS  Google Scholar 

  24. Newstead CG (2003) Recurrent disease in renal transplants. Nephrol Dial Transplant 18 (Suppl 6): Svi68–Svi74

    Google Scholar 

  25. Swaminathan S et al. (2006) Collapsing and non-collapsing focal segmental glomerulosclerosis in kidney transplants. Nephrol Dial Transplant 21: 2607–2614

    Article  Google Scholar 

  26. Adrogue HE et al. (2007) Coincident activation of Th2 T cells with onset of the disease and differential expression of GRO-gamma in peripheral blood leukocytes in minimal change disease. Am J Nephrol 27: 253–261

    Article  Google Scholar 

  27. Zafarmand A et al. (2002) De novo minimal change disease associated with reversible post-transplant nephrotic syndrome: a report of five cases and review of literature. Clin Transplant 16: 350–361

    Article  Google Scholar 

  28. Ronco P and Debiec H (2005) Molecular pathomechanisms of membranous nephropathy: from Heymann nephritis to alloimmunization. J Am Soc Nephrol 16: 1205–1213

    Article  CAS  Google Scholar 

  29. Cosyns JP et al. (1998) Recurrence of membranous nephropathy after renal transplantation: probability, outcome and risk factors. Clin Nephrol 50: 144–153

    CAS  PubMed  Google Scholar 

  30. Requiao-Moura R et al. (2007) Prognostic factors associated with poor graft outcomes in renal recipients with post-transplant glomerulonephritis. Clin Transplant 21: 363–370

    Article  Google Scholar 

  31. Schwarz A et al. (1994) Impact of de novo membranous glomerulonephritis on the clinical course after kidney transplantation. Transplantation 58: 650–654

    Article  CAS  Google Scholar 

  32. Poduval RD et al. (2003) Treatment of de novo and recurrent membranous nephropathy in renal transplant recipients. Semin Nephrol 23: 392–399

    Article  CAS  Google Scholar 

  33. Joosten SA et al. (2005) Antibody response against the glomerular basement membrane protein agrin in patients with transplant glomerulopathy. Am J Transplant 5: 383–393

    Article  CAS  Google Scholar 

  34. Berger SP and Daha MR (2007) Complement in glomerular injury. Semin Immunopathol 29: 375–384

    Article  CAS  Google Scholar 

  35. Braun MC et al. (2005) Recurrence of membranoproliferative glomerulonephritis type II in renal allografts: the North American Pediatric Renal Transplant Cooperative Study Experience. J. Am Soc Nephrol 16: 2225–2233

    Article  Google Scholar 

  36. Little MA et al. (2006) Severity of primary MPGN, rather than MPGN type, determines renal survival and post-transplantation recurrence risk. Kidney Int 69: 504–511

    Article  CAS  Google Scholar 

  37. Levy J et al. (2001) Long-term outcome of anti-glomerular basement membrane antibody disease treated with plasma exchange and immunosuppression. Ann Intern Med 134: 1033–1042

    Article  CAS  Google Scholar 

  38. Khandelwal M et al. (2004) Recurrence of anti-GBM disease 8 years after renal transplantation. Nephrol Dial Transplant 19: 491–494

    Article  CAS  Google Scholar 

  39. Borza DB et al. (2005) Recurrent Goodpasture's disease secondary to a monoclonal IgA1-kappa antibody autoreactive with the alpha1/alpha2 chains of type IV collagen. Am J Kidney Dis 45: 397–406

    Article  Google Scholar 

  40. Nachman PH et al. (1999) Recurrent ANCA-associated small vessel vasculitis after transplantation: a pooled analysis. Kidney Int 56: 1544–1550

    Article  CAS  Google Scholar 

  41. Elmedhem A et al. (2003) Relapse rate and outcome of ANCA-associated small vessel vasculitis after transplantation. Nephrol Dial Transplant 18: 1001–1004

    Article  Google Scholar 

  42. Choy BY et al. (2006) Recurrent glomerulonephritis after kidney transplantation. Am J Transplant 6: 2535–2542

    Article  CAS  Google Scholar 

  43. Gera M et al. (2007) Recurrence of ANCA-associated vasculitis following renal transplantation in the modern era of immunosupression. Kidney Int 71: 1296–1301

    Article  CAS  Google Scholar 

  44. Barratt J et al. (2007) Immunopathogenesis of IgAN. Semin Immunopathol 29: 427–443

    Article  CAS  Google Scholar 

  45. Gough J et al. (2005) Recurrent and de novo glomerular immune-complex deposits in renal transplant biopsies. Arch Pathol Lab Med 129: 231–233

    PubMed  Google Scholar 

  46. Bumgardner GL et al. (1998) Single-center long-term results of renal transplantation for IgA nephropathy. Transplantation 65: 1053–1060

    Article  CAS  Google Scholar 

  47. Jeong HJ et al. (2004) IgA nephropathy in renal allografts—recurrence and graft dysfunction. Yonsei Med J 45: 1043–1048

    Article  Google Scholar 

  48. Chacko B et al. (2007) Outcomes of renal transplantation in patients with immunoglobulin A nephropathy in India. J Postgrad Med 53: 92–95

    Article  CAS  Google Scholar 

  49. Choy BY et al. (2003) Renal transplantation in patients with primary immunoglobulin A nephropathy. Nephrol Dial Transplant 18: 2399–2404

    Article  Google Scholar 

  50. Andresdottir MB et al. (2001) Favorable outcome of renal transplantation in patients with IgA nephropathy. Clin Nephrol 56: 279–288

    CAS  PubMed  Google Scholar 

  51. Wang AY et al. (2001) Recurrent IgA nephropathy in renal transplant allografts. Am J Kidney Dis 38: 588–596

    Article  CAS  Google Scholar 

  52. McDonald S et al. (2006) Recurrence of IgA nephropathy among renal allograft recipients from living donors is greater among those with zero HLA mismatches. Transplantation 82: 759–762

    Article  CAS  Google Scholar 

  53. Jeong HJ et al. (2004) Glomerular crescents are responsible for chronic graft dysfunction in post-transplant IgA nephropathy. Pathol Int 54: 837–842

    Article  Google Scholar 

  54. Coppo R et al. (2007) Serological and genetic factors in early recurrence of IgA nephropathy after renal transplantation. Clin Transplant 21: 728–737

    PubMed  Google Scholar 

  55. Kashtan CE (2006) Renal transplantation in patients with Alport syndrome. Pediatr Transplant 10: 651–657

    Article  Google Scholar 

  56. Jais JP et al. (2003) X-linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to 195 families: a “European Community Alport Syndrome Concerted Action” study. J Am Soc Nephrol 14: 2603–2610

    Article  Google Scholar 

  57. Artz MA et al. (2003) Renal transplantation in patients with hemolytic uremic syndrome: high rate of recurrence and increased incidence of acute rejections. Transplantation 76: 821–826

    Article  Google Scholar 

  58. Caprioli J et al. (2006) Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment and outcome. Blood 108: 1267–1279

    Article  CAS  Google Scholar 

  59. Ponticelli C and Banfi G (2006) Thrombotic microangiopathy after kidney transplantation. Transpl Int 19: 789–794

    Article  Google Scholar 

  60. Sellier-Leclerc A et al. (2007) Differential impact of complement mutations on clinical characteristics in atypical hemolytic uremic syndrome. J Am Soc Nephrol 18: 2392–2400

    Article  CAS  Google Scholar 

  61. Bresin E et al. (2006) Outcome of renal transplantation in patients with non-Shiga toxin-associated hemolytic uremic syndrome: prognostic significance of genetic background. Clin J Am Soc Nephrol 1: 88–99

    Article  CAS  Google Scholar 

  62. Reynolds JC et al. (2003) Thrombotic microangiopathy after renal transplantation in the United States. Am J Kidney Dis 42: 1058–1068

    Article  Google Scholar 

  63. Karthikeyan V et al. (2003) Outcome of plasma exchange therapy in thrombotic microangiopathy after renal transplantation. Am J Transplant 3: 1289–1294

    Article  Google Scholar 

  64. Zarifian A et al. (1999) Cyclosporine-associated thrombotic microangiopathy in renal allografts. Kidney Int 55: 2457–2466

    Article  CAS  Google Scholar 

  65. Schwimmer J et al. (2003) De novo thrombotic microangiopathy in renal transplant recipients: a comparison of hemolytic uremic syndrome with localized renal thrombotic microangiopathy. Am J Kidney Dis 41: 471–479

    Article  Google Scholar 

  66. Opelz G et al. (2006) No improvement of patient or graft survival in transplant recipients treated with angiotensin-converting enzyme inhibitors or angiotensin II type 1 receptor blockers: a collaborative transplant study report. J Am Soc Nephrol 17: 3257–3262

    Article  CAS  Google Scholar 

  67. Weber S and Tönshoff B (2005) Recurrence of focal-segmental glomerulosclerosis in children after renal transplantation: clinical and genetic aspects. Transplantation 80 (Suppl): S128–S134

    Article  Google Scholar 

  68. Vincenti F and Ghiggeri GM (2005) New insights into the pathogenesis and the therapy of recurrent focal glomerulosclerosis. Am J Transplant 5: 1179–1185

    Article  CAS  Google Scholar 

  69. Yabu JM et al. (2008) Rituximab failed to improve nephrotic syndrome in renal transplant recipients with recurrent focal segmental glomerulosclerosis. Am J Transplant 8: 222–227

    CAS  PubMed  Google Scholar 

  70. Fine RN (2007) Recurrence of nephrotic syndrome/focal segmental glomerulosclerosis following renal transplantation in children. Pediatr Nephrol 22: 496–502

    Article  Google Scholar 

  71. Ruggenenti P et al. (2006) Rituximab for idiopathic membranous nephropathy: who can benefit? Clin J Am Soc Nephrol 1: 738–748

    Article  CAS  Google Scholar 

  72. Gallon L and Chhabra D (2006) Anti-CD20 monoclonal antibody (rituximab) for the treatment of recurrent idiopathic membranous nephropathy in a renal transplant patient. Am J Transplant 6: 3017–3021

    Article  CAS  Google Scholar 

  73. Geetha D et al. (2007) Successful induction of remission with rituximab for relapse of ANCA-associated vasculitis post-kidney transplant: report of two cases. Am J Transplant 7: 2821–2825

    Article  CAS  Google Scholar 

  74. Courtney AE et al. (2006) Does angiotensin blockade influence graft outcome in renal transplant recipients with IgA nephropathy? Nephrol Dial Transplant 21: 3550–3554

    Article  CAS  Google Scholar 

  75. Meier-Kriesche HU et al. (2003) Decreased renal function is a strong risk factor for cardiovascular death after renal transplantation. Transplantation 75: 1291–1295

    Article  Google Scholar 

  76. Fernández-Fresnedo G et al. (2004) Proteinuria: a new marker of long-term graft and patient survival in kidney transplantation. Nephrol Dial Transplant 19 (Suppl 3): Siii47–Siii51

    Google Scholar 

  77. Magee C and Pascual M (2004) Update in renal transplantation. Arch Intern Med 164: 1373–1388

    Article  Google Scholar 

  78. Matas AJ (2006) Recurrent disease after kidney transplantation—it is time to unite to address this problem! Am J Transplant 6: 2527–2528

    Article  CAS  Google Scholar 

  79. Floege J (2003) Recurrent glomerulonephritis following renal transplantation: an update. Nephrol. Dial Transplant 18: 1260–1265

    Article  Google Scholar 

  80. Noris M and Remuzzi G (2005) Hemolytic uremic syndrome. J Am Soc Nephrol 16: 1035–1050

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanyi, B. A primer on recurrent and de novo glomerulonephritis in renal allografts. Nat Rev Nephrol 4, 446–457 (2008). https://doi.org/10.1038/ncpneph0854

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0854

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing