Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration

Abstract

RNA exosomes are multi-subunit complexes conserved throughout evolution1 and are emerging as the major cellular machinery for processing, surveillance and turnover of a diverse spectrum of coding and noncoding RNA substrates essential for viability2. By exome sequencing, we discovered recessive mutations in EXOSC3 (encoding exosome component 3) in four siblings with infantile spinal motor neuron disease, cerebellar atrophy, progressive microcephaly and profound global developmental delay, consistent with pontocerebellar hypoplasia type 1 (PCH1; MIM 607596)3,4,5,6. We identified mutations in EXOSC3 in an additional 8 of 12 families with PCH1. Morpholino knockdown of exosc3 in zebrafish embryos caused embryonic maldevelopment, resulting in small brain size and poor motility, reminiscent of human clinical features, and these defects were largely rescued by co-injection with wild-type but not mutant exosc3 mRNA. These findings represent the first example of an RNA exosome core component gene that is responsible for a human disease and further implicate dysregulation of RNA processing in cerebellar and spinal motor neuron maldevelopment and degeneration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuroimaging, neuromuscular and pathological features in family 1.
Figure 2: EXOSC3 mutations in PCH1.
Figure 3: Knockdown of exosc3 in zebrafish embryos disrupts normal development.

Similar content being viewed by others

References

  1. Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M. & Tollervey, D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 91, 457–466 (1997).

    Article  CAS  Google Scholar 

  2. Jensen, T.H. RNA exosome. Adv. Exp. Med. Biol. 702 (2010).

  3. Norman, R.M. Cerebellar hypoplasia in Werdnig-Hoffmann disease. Arch. Dis. Child. 36, 96–101 (1961).

    Article  CAS  Google Scholar 

  4. Goutières, F., Aicardi, J. & Farkas, E. Anterior horn cell disease associated with pontocerebellar hypoplasia in infants. J. Neurol. Neurosurg. Psychiatry 40, 370–378 (1977).

    Article  Google Scholar 

  5. de Leén, G.A., Grover, W.D. & D'Cruz, C.A. Amyotrophic cerebellar hypoplasia: a specific form of infantile spinal atrophy. Acta Neuropathol. 63, 282–286 (1984).

    Article  Google Scholar 

  6. Barth, P.G. Pontocerebellar hypoplasias. An overview of a group of inherited neurodegenerative disorders with fetal onset. Brain Dev. 15, 411–422 (1993).

    Article  CAS  Google Scholar 

  7. Namavar, Y., Barth, P.G., Poll-The, B.T. & Baas, F. Classification, diagnosis and potential mechanisms in pontocerebellar hypoplasia. Orphanet J. Rare Dis. 6, 50 (2011).

    Article  Google Scholar 

  8. Melki, J. et al. De novo and inherited deletions of the 5q13 region in spinal muscular atrophies. Science 264, 1474–1477 (1994).

    Article  CAS  Google Scholar 

  9. Görgen-Pauly, U., Sperner, J., Reiss, I., Gehl, H.B. & Reusche, E. Familial pontocerebellar hypoplasia type I with anterior horn cell disease. Eur. J. Paediatr. Neurol. 3, 33–38 (1999).

    Article  Google Scholar 

  10. Muntoni, F. et al. Clinical spectrum and diagnostic difficulties of infantile ponto-cerebellar hypoplasia type 1. Neuropediatrics 30, 243–248 (1999).

    Article  CAS  Google Scholar 

  11. Ryan, M.M., Cooke-Yarborough, C.M., Procopis, P.G. & Ouvrier, R.A. Anterior horn cell disease and olivopontocerebellar hypoplasia. Pediatr. Neurol. 23, 180–184 (2000).

    Article  CAS  Google Scholar 

  12. Rudnik-Schöneborn, S. et al. Extended phenotype of pontocerebellar hypoplasia with infantile spinal muscular atrophy. Am. J. Med. Genet. A 117A, 10–17 (2003).

    Article  Google Scholar 

  13. Chou, S.M. et al. Infantile olivopontocerebellar atrophy with spinal muscular atrophy (infantile OPCA + SMA). Clin. Neuropathol. 9, 21–32 (1990).

    CAS  PubMed  Google Scholar 

  14. Salman, M.S. et al. Pontocerebellar hypoplasia type 1: new leads for an earlier diagnosis. J. Child Neurol. 18, 220–225 (2003).

    Article  Google Scholar 

  15. Gómez-Lado, C., Eiris-Punal, J., Vazquez-Lopez, M.E. & Castro-Gago, M. Pontocerebellar hypoplasia type I and mitochondrial pathology. Rev. Neurol. 45, 639–640 (2007).

    PubMed  Google Scholar 

  16. Lev, D. et al. Infantile onset progressive cerebellar atrophy and anterior horn cell degeneration—a late onset variant of PCH-1? Eur. J. Paediatr. Neurol. 12, 97–101 (2008).

    Article  Google Scholar 

  17. Szabó, N., Szabo, H., Hortobagyi, T., Turi, S. & Sztriha, L. Pontocerebellar hypoplasia type 1. Pediatr. Neurol. 39, 286–288 (2008).

    Article  Google Scholar 

  18. Tsao, C.Y., Mendell, J., Sahenk, Z., Rusin, J. & Boue, D. Hypotonia, weakness, and pontocerebellar hypoplasia in siblings. Semin. Pediatr. Neurol. 15, 151–153 (2008).

    Article  Google Scholar 

  19. Sanefuji, M. et al. Autopsy case of later-onset pontocerebellar hypoplasia type 1: pontine atrophy and pyramidal tract involvement. J. Child Neurol. 25, 1429–1434 (2010).

    Article  Google Scholar 

  20. Renbaum, P. et al. Spinal muscular atrophy with pontocerebellar hypoplasia is caused by a mutation in the VRK1 gene. Am. J. Hum. Genet. 85, 281–289 (2009).

    Article  CAS  Google Scholar 

  21. Namavar, Y. et al. Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia. Brain 134, 143–156 (2011).

    Article  Google Scholar 

  22. Simonati, A., Cassandrini, D., Bazan, D. & Santorelli, F.M. TSEN54 mutation in a child with pontocerebellar hypoplasia type 1. Acta Neuropathol. 121, 671–673 (2011).

    Article  Google Scholar 

  23. Budde, B.S. et al. tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nat. Genet. 40, 1113–1118 (2008).

    Article  CAS  Google Scholar 

  24. Edvardson, S. et al. Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am. J. Hum. Genet. 81, 857–862 (2007).

    Article  CAS  Google Scholar 

  25. Rankin, J. et al. Pontocerebellar hypoplasia type 6: a British case with PEHO-like features. Am. J. Med. Genet. A 152A, 2079–2084 (2010).

    Article  CAS  Google Scholar 

  26. Brouwer, R. et al. Three novel components of the human exosome. J. Biol. Chem. 276, 6177–6184 (2001).

    Article  CAS  Google Scholar 

  27. Liu, Q., Greimann, J.C. & Lima, C.D. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127, 1223–1237 (2006).

    Article  CAS  Google Scholar 

  28. Kani, S. et al. Proneural gene–linked neurogenesis in zebrafish cerebellum. Dev. Biol. 343, 1–17 (2010).

    Article  CAS  Google Scholar 

  29. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    Article  CAS  Google Scholar 

  30. Wolfe, J.F., Adelstein, E. & Sharp, G.C. Antinuclear antibody with distinct specificity for polymyositis. J. Clin. Invest. 59, 176–178 (1977).

    Article  CAS  Google Scholar 

  31. Allmang, C. et al. The yeast exosome and human PM-Scl are related complexes of 3′→5′ exonucleases. Genes Dev. 13, 2148–2158 (1999).

    Article  CAS  Google Scholar 

  32. Yang, X.F. et al. CML28 is a broadly immunogenic antigen, which is overexpressed in tumor cells. Cancer Res. 62, 5517–5522 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Xie, L.H. et al. Activation of cytotoxic T lymphocytes against CML28-bearing tumors by dendritic cells transduced with a recombinant adeno-associated virus encoding the CML28 gene. Cancer Immunol. Immunother. 57, 1029–1038 (2008).

    Article  Google Scholar 

  34. Kabashi, E. et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat. Genet. 40, 572–574 (2008).

    Article  CAS  Google Scholar 

  35. Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008).

    Article  CAS  Google Scholar 

  36. Kwiatkowski, T.J. Jr. et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208 (2009).

    Article  CAS  Google Scholar 

  37. Vance, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211 (2009).

    Article  CAS  Google Scholar 

  38. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p–linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  Google Scholar 

  39. Renton, A.E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21–linked ALS-FTD. Neuron 72, 257–268 (2011).

    Article  CAS  Google Scholar 

  40. Kobayashi, H. et al. Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. Am. J. Hum. Genet. 89, 121–130 (2011).

    Article  CAS  Google Scholar 

  41. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  Google Scholar 

  42. DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  Google Scholar 

  43. Biesecker, L.G. et al. The ClinSeq Project: piloting large-scale genome sequencing for research in genomic medicine. Genome Res. 19, 1665–1674 (2009).

    Article  CAS  Google Scholar 

  44. Bhagwat, M. Searching NCBI's dbSNP database. Curr. Protoc. Bioinformatics Chapter 1, Unit 1.19 (2010).

    PubMed  Google Scholar 

  45. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  46. Thisse, C. & Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59–69 (2008).

    Article  CAS  Google Scholar 

  47. Preker, P. et al. RNA exosome depletion reveals transcription upstream of active human promoters. Science 322, 1851–1854 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the generosity of the families who participated in this study. The sequencing and analytical work were supported by the Bioinformatics and Genomics Core of the UCLA Muscular Dystrophy Core Center (US National Institutes of Health (NIH)/National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) P30AR057230) within the Center for Duchenne Muscular Dystrophy. We appreciate fibroblasts from three subjects from the Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD) Brain and Tissue Bank for Developmental Disorders. We acknowledge the contribution of clinical data by P. Carpenter (University of California, Irvine). The work was supported by the NIH/National Eye Institute (NEI) (R01 EY015311 and NINDS R01 NS064183 to J.C.J.), Deutsche Forschungsgemeinschaft (Ru-746/1-1 to S.R.-S. and K.Z.), IZKF Aachen (N5-4 to S.R.-S. and J.S.), the Australian National Health and Medical Research Council (NHMRC) Centre for Research Excellence (M.M.R.), the Internal Grant Agency of the Ministry of Health of the Czech Republic (NS 10552-3 to P.S.) and Xunta de Galicia–Plan Galego de InvestigaCión, Desenvolvemento e Innovación Tecnolóxica (INCITE) (10PXIB9101280PR to M.-J.S.).

Author information

Authors and Affiliations

Authors

Contributions

S.F.N. and J.C.J. designed the study. M.Y., Z.C. and S.F.N. analyzed data from SNP genotyping and exome sequencing. S.R.-S., M.P.M., J.S., M.S.S., D.C., P.S., A.v.M., L.G.-N., A.J.K., M.C.-G., M.-J.S., M.S., P.B.S., N.S., R.C.K., H.V.V., K.Z. and M.M.R. provided and analyzed clinical material from subjects. H.M., J.E.H. and D.W.L. performed and analyzed data from Sanger sequencing of subjects and controls. H.M. and J.E.H. generated constructs and performed molecular genetics studies. J.W. performed and analyzed the functional studies in zebrafish. All authors contributed to the manuscript written by J.C.J.

Corresponding author

Correspondence to Joanna C Jen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Tables 1–5 and Supplementary Figures 1–4 (PDF 942 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, J., Yourshaw, M., Mamsa, H. et al. Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat Genet 44, 704–708 (2012). https://doi.org/10.1038/ng.2254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing