Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection

Abstract

Cervical artery dissection (CeAD), a mural hematoma in a carotid or vertebral artery, is a major cause of ischemic stroke in young adults although relatively uncommon in the general population (incidence of 2.6/100,000 per year)1. Minor cervical traumas, infection, migraine and hypertension are putative risk factors1,2,3, and inverse associations with obesity and hypercholesterolemia are described3,4. No confirmed genetic susceptibility factors have been identified using candidate gene approaches5. We performed genome-wide association studies (GWAS) in 1,393 CeAD cases and 14,416 controls. The rs9349379[G] allele (PHACTR1) was associated with lower CeAD risk (odds ratio (OR) = 0.75, 95% confidence interval (CI) = 0.69–0.82; P = 4.46 × 10−10), with confirmation in independent follow-up samples (659 CeAD cases and 2,648 controls; P = 3.91 × 10−3; combined P = 1.00 × 10−11). The rs9349379[G] allele was previously shown to be associated with lower risk of migraine and increased risk of myocardial infarction6,7,8,9. Deciphering the mechanisms underlying this pleiotropy might provide important information on the biological underpinnings of these disabling conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regional association plot centered on rs9349379 (PHACTR1).

Similar content being viewed by others

References

  1. Debette, S. & Leys, D. Cervical-artery dissections: predisposing factors, diagnosis, and outcome. Lancet Neurol. 8, 668–678 (2009).

    Article  PubMed  Google Scholar 

  2. Rubinstein, S.M., Peerdeman, S.M., van Tulder, M.W., Riphagen, I. & Haldeman, S. A systematic review of the risk factors for cervical artery dissection. Stroke 36, 1575–1580 (2005).

    Article  PubMed  Google Scholar 

  3. Debette, S. et al. Association of vascular risk factors with cervical artery dissection and ischemic stroke in young adults. Circulation 123, 1537–1544 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Arnold, M. et al. Vascular risk factors and morphometric data in cervical artery dissection: a case-control study. J. Neurol. Neurosurg. Psychiatry 80, 232–234 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Debette, S. & Markus, H.S. The genetics of cervical artery dissection: a systematic review. Stroke 40, e459–e466 (2009).

    CAS  PubMed  Google Scholar 

  6. Kathiresan, S. et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat. Genet. 41, 334–341 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Deloukas, P. et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat. Genet. 45, 25–33 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Freilinger, T. et al. Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat. Genet. 44, 777–782 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anttila, V. et al. Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat. Genet. 45, 912–917 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Debette, S. et al. Differential features of carotid and vertebral artery dissections: the CADISP study. Neurology 77, 1174–1181 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Debette, S. et al. CADISP-genetics: an international project searching for genetic risk factors of cervical artery dissections. Int. J. Stroke 4, 224–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Wakefield, J. Bayes factors for genome-wide association studies: comparison with P-values. Genet. Epidemiol. 33, 79–86 (2009).

    Article  PubMed  Google Scholar 

  13. Pezzini, A. et al. Plasma homocysteine concentration, C677T MTHFR genotype, and 844ins68bp CBS genotype in young adults with spontaneous cervical artery dissection and atherothrombotic stroke. Stroke 33, 664–669 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Pezzini, A. et al. Migraine mediates the influence of C677T MTHFR genotypes on ischemic stroke risk with a stroke-subtype effect. Stroke 38, 3145–3151 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Longoni, M. et al. The ICAM-1 E469K gene polymorphism is a risk factor for spontaneous cervical artery dissection. Neurology 66, 1273–1275 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Pepin, M., Schwarze, U., Superti-Furga, A. & Byers, P.H. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N. Engl. J. Med. 342, 673–680 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Low, S.K. et al. Genome-wide association study for intracranial aneurysm in the Japanese population identifies three candidate susceptible loci and a functional genetic variant at EDNRA. Hum. Mol. Genet. 21, 2102–2110 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Bilguvar, K. et al. Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat. Genet. 40, 1472–1477 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yasuno, K. et al. Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nat. Genet. 42, 420–425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lemaire, S.A. et al. Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1. Nat. Genet. 43, 996–1000 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O'Donnell, C.J. et al. Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation 124, 2855–2864 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu, X. et al. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nat. Genet. 44, 890–894 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hager, J. et al. Genome-wide association study in a Lebanese cohort confirms PHACTR1 as a major determinant of coronary artery stenosis. PLoS ONE 7, e38663 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mehta, N.N. A genome-wide association study in Europeans and South Asians identifies 5 new loci for coronary artery disease. Circ. Cardiovasc. Genet. 4, 465–466 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat. Genet. 43, 339–344 (2011).

  27. Bevan, S. et al. Genetic heritability of ischemic stroke and the contribution of previously reported candidate gene and genomewide associations. Stroke 43, 3161–3167 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Bellenguez, C. et al. Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat. Genet. 44, 328–333 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Traylor, M. et al. Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE Collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol. 11, 951–962 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Smyth, D.J. et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N. Engl. J. Med. 359, 2767–2777 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Calvet, D. et al. Increased stiffness of the carotid wall material in patients with spontaneous cervical artery dissection. Stroke 35, 2078–2082 (2004).

    Article  PubMed  Google Scholar 

  32. Golledge, J. & Eagle, K.A. Acute aortic dissection. Lancet 372, 55–66 (2008).

    Article  PubMed  Google Scholar 

  33. Norman, P.E., Davis, T.M., Le, M.T. & Golledge, J. Matrix biology of abdominal aortic aneurysms in diabetes: mechanisms underlying the negative association. Connect. Tissue Res. 48, 125–131 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Shantikumar, S., Ajjan, R., Porter, K.E. & Scott, D.J. Diabetes and the abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 39, 200–207 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Callaghan, F.M. et al. Wall stress of the cervical carotid artery in patients with carotid dissection: a case-control study. Am. J. Physiol. Heart Circ. Physiol. 300, H1451–H1458 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Kurth, T. et al. Headache, migraine, and structural brain lesions and function: population based Epidemiology of Vascular Ageing-MRI study. Br. Med. J. 342, c7357 (2011).

    Article  Google Scholar 

  37. Chasman, D.I. et al. Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat. Genet. 43, 695–698 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Metso, T.M. et al. Migraine in cervical artery dissection and ischemic stroke patients. Neurology 78, 1221–1228 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Allen, P.B., Greenfield, A.T., Svenningsson, P., Haspeslagh, D.C. & Greengard, P. Phactrs 1–4: a family of protein phosphatase 1 and actin regulatory proteins. Proc. Natl. Acad. Sci. USA 101, 7187–7192 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Allain, B. et al. Neuropilin-1 regulates a new VEGF-induced gene, Phactr-1, which controls tubulogenesis and modulates lamellipodial dynamics in human endothelial cells. Cell. Signal. 24, 214–223 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Jarray, R. et al. Depletion of the novel protein PHACTR-1 from human endothelial cells abolishes tube formation and induces cell death receptor apoptosis. Biochimie 93, 1668–1675 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Fils-Aimé, N. et al. MicroRNA-584 and the protein phosphatase and actin regulator 1 (PHACTR1), a new signaling route through which transforming growth factor-β mediates the migration and actin dynamics of breast cancer cells. J. Biol. Chem. 288, 11807–11823 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Goumans, M.J., Liu, Z. & ten Dijke, P. TGF-β signaling in vascular biology and dysfunction. Cell Res. 19, 116–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Loeys, B.L. et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat. Genet. 37, 275–281 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, X. et al. Genetic associations with expression for genes implicated in GWAS studies for atherosclerotic cardiovascular disease and blood phenotypes. Hum. Mol. Genet. 23, 782–795 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Westra, H.J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bown, M.J. et al. Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor–related protein 1. Am. J. Hum. Genet. 89, 619–627 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee, V.H., Brown, R.D. Jr., Mandrekar, J.N. & Mokri, B. Incidence and outcome of cervical artery dissection: a population-based study. Neurology 67, 1809–1812 (2006).

    Article  PubMed  Google Scholar 

  49. Pruim, R.J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    CAS  PubMed  Google Scholar 

  51. Thomas, D. Gene—environment-wide association studies: emerging approaches. Nat. Rev. Genet. 11, 259–272 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the staff and participants of all CADISP centers for their important contributions. The CADISP study has been supported by INSERM, Lille 2 University, Institut Pasteur de Lille and Lille University Hospital and received funding from the European Regional Development Fund (FEDER funds) and Région Nord-Pas-de-Calais in the framework of Contrat de Projets Etat-Region 2007–2013 Région Nord-Pas-de-Calais (grant 09120030), Centre National de Génotypage, the Emil Aaltonen Foundation, the Paavo Ilmari Ahvenainen Foundation, the Helsinki University Central Hospital Research Fund, the Helsinki University Medical Foundation, the Päivikki and Sakari Sohlberg Foundation, the Aarne Koskelo Foundation, the Maire Taponen Foundation, the Aarne and Aili Turunen Foundation, the Lilly Foundation, the Alfred Kordelin Foundation, the Finnish Medical Foundation, the Orion Farmos Research Foundation, the Maud Kuistila Foundation, the Finnish Brain Foundation, the Biomedicum Helsinki Foundation, Projet Hospitalier de Recherche Clinique Régional, Fondation de France, Génopôle de Lille, Adrinord, the Basel Stroke Funds, the Käthe-Zingg-Schwichtenberg-Fonds of the Swiss Academy of Medical Sciences and the Swiss Heart Foundation.

L.H.B., S.T.E. and P.A.L. were supported, in part, by a grant from the Swiss National Science Foundation (33CM30-124119). S.D. is supported by a Chair of Excellence from the French National Research Agency (ANR). S.D. and M.D. are supported by a grant from the Leducq Foundation. M.D. is supported by the Vascular Dementia Research Foundation. I.F.-C. is supported by the Miguel Servet programme (CP12/03298) from the Spanish Ministry of Health (Instituto de Salud Carlos III). G.K. is a member of the Deutsche Forschungsgemeinschaft Cluster of Excellence 'Inflammation at Interfaces'. P.S. is supported by a Department of Health (UK) senior fellowship. A.M.S. is supported by the American Heart Association/American Stroke Association National Clinical Research Program (AHA 3CRP14140001). V.T. is supported by Fonds Wetenschappelijk Onderzoek Flanders.

More detailed acknowledgments can be found in the Supplementary Note.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Study conception and design were performed by S.D., Y.K., M.L., D.L., P.A. and J.D. Acquisition of data was carried out by S.D., T.M.M., M.K., S.T.E., A. Pezzini, V.T., H.S.M., M.D., R.D., E.T., A.M.S., Y.S., S.A., Y.B., V.C., A.B., A.G., M.S., J.C., C. Lamy, E.M., S.B., L.H.B., A.J.G., P.M., J.J.M., P.S., E.B., B.G., E.G.v.d.H., I.F.-C., K.J., I.W., M.A.N., F.-E.D.L., C.J., Y.-C.C., A.J.M., C. Lichy, L.D., L.K., M.N., P.A.L., T. Brandt, G.B.B., H.-E.W., C.G., T. Böttcher, M.C., D.A., M.A.I., M.M.B.B., A. Padovani, J.F.M., G.K., A.R., B.B.W., E.-B.R., D.Z., T.T., M.L., D.L., P.A. and J.D. Statistical analysis and interpretation of the data were performed by S.D., Y.K., C.W., Y.-C.C., G.C., M.L., P.A. and J.D. The manuscript was drafted by S.D., Y.K., M.L., P.A. and J.D. Critical revision of the manuscript was performed by S.D., Y.K., T.M.M., S.T.E., C.W., M.L., P.A., J.D., A. Pezzini, V.T., H.S.M., E.T., A.M.S., J.C., J.J.M., P.S., I.F.-C., A.J.M., P.A.L., M.A.I., D.Z., T.T., M.L., D.L., P.A. and J.D. Annotation for expression quantitative trait loci was performed by A.D.J. Funding was obtained by S.D., S.T.E., A. Pezzini, V.T., H.S.M., M.D., S.B., A.J.G., P.M., J.J.M., P.S., B.G., F.-E.D.L., C.J., P.A.L., G.B.B., H.-E.W., M.C., D.A., M.M.B.B., J.F.M., A.R., B.B.W., E.-B.R., D.Z., T.T., M.L., D.L., P.A. and J.D.

Corresponding author

Correspondence to Stéphanie Debette.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

A list of contributing members appears in the Supplementary Note.

A list of members and affiliations appears in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1–22 and Supplementary Note (PDF 6286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debette, S., Kamatani, Y., Metso, T. et al. Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection. Nat Genet 47, 78–83 (2015). https://doi.org/10.1038/ng.3154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing