Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis

Abstract

Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common, complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified ten new risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with new secondary signals at four of these loci). Notably, the new loci include candidate genes with roles in the regulation of innate host defenses and T cell function, underscoring the important contribution of (auto)immune mechanisms to atopic dermatitis pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atopic dermatitis GWAS meta-analysis results.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Weidinger, S. & Novak, N. Atopic dermatitis. Lancet 10.1016/S0140-6736(15)00149-X (13 September 2015).

  2. Bataille, V., Lens, M. & Spector, T.D. The use of the twin model to investigate the genetics and epigenetics of skin diseases with genomic, transcriptomic and methylation data. J. Eur. Acad. Dermatol. Venereol. 26, 1067–1073 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Irvine, A.D., McLean, W.H. & Leung, D.Y. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 365, 1315–1327 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Palmer, C.N.A. et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 38, 441–446 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Rodríguez, E. et al. Meta-analysis of filaggrin polymorphisms in eczema and asthma: robust risk factors in atopic disease. J. Allergy Clin. Immunol. 123, 1361–1370 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Weidinger, S. et al. A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis. Hum. Mol. Genet. 22, 4841–4856 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ellinghaus, D. et al. High-density genotyping study identifies four new susceptibility loci for atopic dermatitis. Nat. Genet. 45, 808–812 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hirota, T. et al. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population. Nat. Genet. 44, 1222–1226 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Paternoster, L. et al. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat. Genet. 44, 187–192 (2012).

    Article  CAS  Google Scholar 

  10. Sun, L.-D. et al. Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population. Nat. Genet. 43, 690–694 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Esparza-Gordillo, J. et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat. Genet. 41, 596–601 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Esparza-Gordillo, J. et al. A functional IL-6 receptor (IL6R) variant is a risk factor for persistent atopic dermatitis. J. Allergy Clin. Immunol. 132, 371–377 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Agarwala, V., Flannick, J., Sunyaev, S., Go, T.D.C. & Altshuler, D. Evaluating empirical bounds on complex disease genetic architecture. Nat. Genet. 45, 1418–1427 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hinds, D.A. et al. A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nat. Genet. 45, 907–911 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferreira, M.A.R. et al. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet 378, 1006–1014 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Himes, B.E. et al. Genome-wide association analysis identifies PDE4D as an asthma-susceptibility gene. Am. J. Hum. Genet. 84, 581–593 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Noguchi, E. et al. Genome-wide association study identifies HLA-DP as a susceptibility gene for pediatric asthma in Asian populations. PLoS Genet. 7, e1002170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moffatt, M.F. et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363, 1211–1221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sleiman, P.M. et al. Variants of DENND1B associated with asthma in children. N. Engl. J. Med. 362, 36–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Hirota, T. et al. Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat. Genet. 43, 893–896 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bønnelykke, K. et al. Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization. Nat. Genet. 45, 902–906 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tsoi, L.C. et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 44, 1341–1348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. International Genetics of Ankylosing Spondylitis Consortium. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat. Genet. 45, 730–738 (2013).

  25. International Multiple Sclerosis Genetics Consortium. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).

  26. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Bradfield, J.P. et al. A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet. 7, e1002293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Niwa, Y., Sumi, H. & Akamatsu, H. An association between ulcerative colitis and atopic dermatitis, diseases of impaired superficial barriers. J. Invest. Dermatol. 123, 999–1000 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Jakobsen, C., Paerregaard, A., Munkholm, P. & Wewer, V. Environmental factors and risk of developing paediatric inflammatory bowel disease—a population based study 2007–2009. J. Crohns Colitis 7, 79–88 (2013).

    Article  PubMed  Google Scholar 

  30. Baron, S. et al. Environmental risk factors in paediatric inflammatory bowel diseases: a population based case control study. Gut 54, 357–363 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Henseler, T. & Christophers, E. Disease concomitance in psoriasis. J. Am. Acad. Dermatol. 32, 982–986 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Baurecht, H. et al. Genome-wide comparative analysis of atopic dermatitis and psoriasis gives insight into opposing genetic mechanisms. Am. J. Hum. Genet. 96, 104–120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Segrè, A.V. et al. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet. 6, e1001058 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wellcome Trust Case Control Consortium. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).

  35. Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat. Genet. 44, 1084–1089 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  37. Bernstein, B.E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Malissen, B., Tamoutounour, S. & Henri, S. The origins and functions of dendritic cells and macrophages in the skin. Nat. Rev. Immunol. 14, 417–428 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. de Jong, M.A. & Geijtenbeek, T.B. Langerhans cells in innate defense against pathogens. Trends Immunol. 31, 452–459 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Baker, B.S. The role of microorganisms in atopic dermatitis. Clin. Exp. Immunol. 144, 1–9 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tang, T.S., Bieber, T. & Williams, H.C. Does “autoreactivity” play a role in atopic dermatitis? J. Allergy Clin. Immunol. 129, 1209–1215 (2012).

    Article  PubMed  Google Scholar 

  42. Kitabatake, M. et al. Transgenic overexpression of G5PR that is normally augmented in centrocytes impairs the enrichment of high-affinity antigen-specific B cells, increases peritoneal B-1a cells, and induces autoimmunity in aged female mice. J. Immunol. 189, 1193–1201 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Lundström, W., Fewkes, N.M. & Mackall, C.L. IL-7 in human health and disease. Semin. Immunol. 24, 218–224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gregory, S.G. et al. Interleukin 7 receptor α chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat. Genet. 39, 1083–1091 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Lundmark, F. et al. Variation in interleukin 7 receptor α chain (IL7R) influences risk of multiple sclerosis. Nat. Genet. 39, 1108–1113 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Lundström, W. et al. Soluble IL7Rα potentiates IL-7 bioactivity and promotes autoimmunity. Proc. Natl. Acad. Sci. USA 110, E1761–E1770 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Uehira, M., Matsuda, H., Nakamura, A. & Nishimoto, H. Immunologic abnormalities exhibited in IL-7 transgenic mice with dermatitis. J. Invest. Dermatol. 110, 740–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Steward-Tharp, S.M. et al. A mouse model of HIES reveals pro- and anti-inflammatory functions of STAT3. Blood 123, 2978–2987 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Milner, J.D. et al. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452, 773–776 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lupski, J.R., Belmont, J.W., Boerwinkle, E. & Gibbs, R.A. Clan genomics and the complex architecture of human disease. Cell 147, 32–43 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Blair, D.R. et al. A nondegenerate code of deleterious variants in Mendelian loci contributes to complex disease risk. Cell 155, 70–80 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Mertens-Talcott, S.U., Chintharlapalli, S., Li, X. & Safe, S. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res. 67, 11001–11011 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Ferreira, M.A. et al. Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype. J. Allergy Clin. Immunol. 133, 1564–1571 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Stritesky, G.L., Jameson, S.C. & Hogquist, K.A. Selection of self-reactive T cells in the thymus. Annu. Rev. Immunol. 30, 95–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Moisan, J., Grenningloh, R., Bettelli, E., Oukka, M. & Ho, I.C. Ets-1 is a negative regulator of Th17 differentiation. J. Exp. Med. 204, 2825–2835 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nagarajan, P. et al. Ets1 blocks terminal differentiation of keratinocytes and induces expression of matrix metalloproteases and innate immune mediators. J. Cell Sci. 123, 3566–3575 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Beck, L.A. et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N. Engl. J. Med. 371, 130–139 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Granada, M. et al. A genome-wide association study of plasma total IgE concentrations in the Framingham Heart Study. J. Allergy Clin. Immunol. 129, 840–845 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Ramasamy, A. et al. A genome-wide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order. J. Allergy Clin. Immunol. 128, 996–1005 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Morris, A.P. Transethnic meta-analysis of genomewide association studies. Genet. Epidemiol. 35, 809–822 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang, X. et al. Comparing methods for performing trans-ethnic meta-analysis of genome-wide association studies. Hum. Mol. Genet. 22, 2303–2311 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nyholt, D.R. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am. J. Hum. Genet. 74, 765–769 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Cole, C. et al. Filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis. J. Allergy Clin. Immunol. 134, 82–91 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tintle, S. et al. Reversal of atopic dermatitis with narrow-band UVB phototherapy and biomarkers for therapeutic response. J. Allergy Clin. Immunol. 128, 583–593 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maurano, M.T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. So, H.C., Li, M. & Sham, P.C. Uncovering the total heritability explained by all true susceptibility variants in a genome-wide association study. Genet. Epidemiol. 35, 447–456 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This publication is the work of the authors, and L.P. will serve as guarantor for the contents of this paper. This research was specifically funded by an MRC Population Health Scientist Fellowship awarded to L.P. (MR/J012165/1). D.M.E. is supported by an Australian Research Council Future Fellowship (FT130101709) and a Medical Research Council program grant (MC_UU_12013/4). Individual study acknowledgment and funding statements can be found in the Supplementary Note.

Author information

Authors and Affiliations

Consortia

Contributions

Conceived and designed the experiments: L.P., M.S., H. Baurecht, D.P.S., J.A.C., K.B., J.P.T., H.T.d.D., P.M.A.S., F.L.X., M.B., J.Y.T., A.J.H., G.D.S., E.R., J.P., L.L.H., J.C.d.J., F. Rivadeneira, A.H., V.W.V.J., S.G.M.A.P., N.J.E., A.G.U., D.S.P., B.F., A.C., D.A.M., E. Melén, C.O., A.S., B.J., J.W.H., H. Bisgaard, J.S., N.M.P.-H., L.K.W., K.M.G., D.I.B., M. Melbye, G.H.K., Y.-A.L., N.H., D.J., X.J.Z., H.H., L.D., A.L., M.-R.J., M.T., S.J. Brown, J.H., D.M.E., S.W.

Performed the experiments: L.P., K.B., P.M.A.S., F.L.X., M.B., E.K.-M., G.A.L., M. Kubo, W.L.M., J.P.K., J.Z., E.R., F. Rivadeneira, A.G.U., J.L., X.Y.Y., L.D.S., L.E.C., A.M., C.E., D.S.P., C.M.T.T., M.I., S.H., N.V.-T., B.J., H. Bisgaard, N.M.P.-H., L.K.W., K.M.G., G.H.K., A.L., S.J. Brown, D.M.E., S.W.

Performed the statistical analysis: L.P., M.S., J.W., H. Baurecht, M. Hotze, D.P.S., J.A.C., C.T., A.T., A.B., A.C.A., H.T.d.D., M.A.F., E.A., P.M.A.S., J.R.G., I.M., J.E.-G., M.P.-Y., C.-J.X., L.C., M.M.G.-B., C.V., S.J. Barton, A.M.L., I.C., E.K.-M., G.A.L., S.B., R.A.M., F. Rüschendorf, A.K., J.P.K., J.Z., L.L.H., F. Rivadeneira, N.J.E., J.S.R., J.L., X.B.Z., X.D.Z., D.H., B.F., F.G., P.H., C.M.T.T., E.T., B.P., J.J.Y., N.V.-T., R.M., C.A.W., L.D., D.A.H., D.M.E.

Analyzed the data: L.P., M.S., J.W., H. Baurecht, M. Hotze, D.P.S., J.A.C., K.B., C.T., A.B., A.C.A., J.P.T., H.T.d.D., M.A.F., E.A., P.M.A.S., F.L.X., J.R.G., I.M., J.E.-G., M.P.-Y., C.-J.X., L.C., M.M.G.-B., C.V., S.J. Barton, A.M.L., I.C., G.A.L., J.B., S.B., R.A.M., F. Rüschendorf, A.K., A.J.H., M. Horikoshi, S.S., L.L.H., F. Rivadeneira, N.J.E., A.G.U., M.C.M., J.S.R., J.L., X.B.Z., X.D.Z., X.Y.Y., D.H., B.F., F.G., J.J.H., C.M.M., P.H., C.M.T.T., E.T., B.P., J.J.Y., M.I., S.H., N.V.-T., E. Melén, B.J., L.K.W., C.A.W., Y.-A.L., N.H., L.D., A.L., M.T., D.A.H., D.G., S.J. Brown, D.M.E.

Contributed reagents, material and/or analysis tools: L.P., J.W., H. Baurecht, M. Hotze, C.T., H.T.d.D., P.M.A.S., M.P.-Y., C.E.P., A.M.L., M.B., S.B., T.H., M. Kubo, W.L.M., J.Z., G.D.S., M. Macek, M. Kurek, M.A.L.-K., E. Mangold, A.P., A.F., W.L., N.N., R.F.-H., N.G., J.C.d.J., F. Rivadeneira, A.H., V.W.V.J., S.G.M.A.P., N.J.E., A.G.U., G.B.M., P.J.T., C.F.R., J.L., L.D.S., M.A.M., G.M.O'R., C.M.R.F., A.A., G.H., C.O.S., B.K., D.H., C.E., D.S.P., V.B., T.S., B.P., J.J.Y., C.L.R., S.T.W., D.A.M., S.C., T.K., C.S., E. Melén, S.L., C.O., B.A.R., B.J., J.W.H., J.S., L.K.W., K.M.G., M. Melbye, G.H.K., Y.-A.L., N.H., D.J., W.H.I.M., A.D.I., X.J.Z., H.H., C.G., E.G.B., N.G.M., L.D., M.-R.J., M.M.N., M.T., D.A.H., S.J. Brown, J.H., S.W.

Wrote the manuscript: L.P., M.S., J.W., H. Baurecht, M. Hotze, D.P.S., J.A.C., K.B., A.J.H., S.J. Brown, D.M.E., S.W.

Revised and reviewed the paper: L.P., M.S., J.W., H. Baurecht, M. Hotze, D.P.S., J.A.C., K.B., C.T., A.T., A.B., A.C.A., J.P.T., H.T.d.D., M.A.F., E.A., P.M.A.S., F.L.X., J.R.G., I.M., J.E.-G., M.P.-Y., C.-J.X., L.C., M.M.G.-B., C.V., C.E.P., S.J. Barton, A.M.L., I.C., M.B., E.K.-M., G.A.L., S.B., R.A.M., F. Rüschendorf, A.K., J.Y.T., T.H., M. Kubo, W.L.M., A.J.H., J.P.K., J.Z., G.D.S., M. Macek, M. Kurek, M.A.L.-K., E. Mangold, E.R., A.P., A.F., W.L., N.N., R.F.-H., M. Horikoshi, J.P., S.S., L.L.H., N.G., J.C.d.J., F. Rivadeneira, A.H., V.W.V.J., S.G.M.A.P., N.J.E., A.G.U., G.B.M., P.J.T., M.C.M., C.F.R., J.S.R., J.L., X.B.Z., X.D.Z., X.Y.Y., L.D.S., M.A.M., G.M.O'R., C.M.R.F., L.E.C., A.A., G.H., A.M., C.O.S., B.K., D.H., C.E., D.S.P., B.F., F.G., J.J.H., C.M.M., P.H., V.B., T.S., C.M.T.T., E.T., B.P., J.J.Y., M.I., S.H., N.V.-T., C.L.R., R.M., W.N., A.C., S.T.W., D.A.M., S.C., T.K., C.S., E. Melén, S.L., C.O., B.A.R., A.S., B.J., J.W.H., H. Bisgaard, J.S., N.M.P.-H., L.K.W., K.M.G., C.A.W., D.I.B., M. Melbye, G.H.K., Y.-A.L., N.H., D.J., W.H.I.M., A.D.I., X.J.Z., H.H., C.G., E.G.B., N.G.M., L.D., A.L., M.-R.J., M.M.N., M.T., D.A.H., D.G., S.J. Brown, J.H., D.M.E., S.W.

AAGC provided results for the discovery analysis.

Corresponding author

Correspondence to Lavinia Paternoster.

Ethics declarations

Competing interests

C.T., D.A.H. and J.Y.T. are employees of and own stock or stock options in 23andMe, Inc. K.M.G. has received reimbursement for speaking at conferences sponsored by companies selling nutritional and pharmaceutical products. He is part of an academic consortium that has received funding from Abbott Nutrition, Nestec and Danone. The University of Groningen has received money for D.S.P. in the context of an unrestricted educational grant for research from AstraZeneca. Fees for consultancies were given to the University of Groningen by AstraZeneca, Boehringer Ingelheim, Chiesi, GlaxoSmithKline, Takeda and TEVA. A.C. reports personal fees from AstraZeneca, personal fees from Novartis and personal fees from ThermoFisher given outside the context of the current manuscript. A.S. reports personal fees from GlaxoSmithKline and personal fees from ThermoFisher given outside the context of the current manuscript.

Additional information

A full list of members and affiliations is provided in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1–4, 11–16, 22 and 23, and Supplementary Note. (PDF 20319 kb)

Supplementary Tables 5–10

Look-ups of known SNPs for various autoimmune diseases. (XLSX 48 kb)

Supplementary Tables 17–21

Functional investigations of credible SNPs. (XLSX 190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

the EArly Genetics and Lifecourse Epidemiology (EAGLE) Eczema Consortium. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat Genet 47, 1449–1456 (2015). https://doi.org/10.1038/ng.3424

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3424

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing