Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14

Abstract

Refractive errors are the most common ocular disorders worldwide and may lead to blindness. Although this trait is highly heritable, identification of susceptibility genes has been challenging. We conducted a genome-wide association study for refractive error in 5,328 individuals from a Dutch population-based study with replication in four independent cohorts (combined 10,280 individuals in the replication stage). We identified a significant association at chromosome 15q14 (rs634990, P = 2.21 × 10−14). The odds ratio of myopia compared to hyperopia for the minor allele (minor allele frequency = 0.47) was 1.41 (95% CI 1.16–1.70) for individuals heterozygous for the allele and 1.83 (95% CI 1.42–2.36) for individuals homozygous for the allele. The associated locus is near two genes that are expressed in the retina, GJD2 and ACTC1, and appears to harbor regulatory elements which may influence transcription of these genes. Our data suggest that common variants at 15q14 influence susceptibility for refractive errors in the general population.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide signal intensity (Manhattan) plot of the discovery cohort Rotterdam Study-I.
Figure 2: Forest plot of associations for myopia (spherical equivalent ≤ −3 diopters) versus hyperopia (spherical equivalent ≥ +3 diopters).
Figure 3: Regional plot at chromosome 15q14.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Bourne, R.R., Dineen, B.P., Ali, S.M., Noorul Huq, D.M. & Johnson, G.J. Prevalence of refractive error in Bangladeshi adults: results of the National Blindness and Low Vision Survey of Bangladesh. Ophthalmology 111, 1150–1160 (2004).

    Article  Google Scholar 

  2. Dandona, R. et al. Population-based assessment of refractive error in India: the Andhra Pradesh eye disease study. Clin. Experiment. Ophthalmol. 30, 84–93 (2002).

    Article  Google Scholar 

  3. Kempen, J.H. et al. The prevalence of refractive errors among adults in the United States, Western Europe, and Australia. Arch. Ophthalmol. 122, 495–505 (2004).

    Article  Google Scholar 

  4. Sawada, A. et al. Refractive errors in an elderly Japanese population: the Tajimi study. Ophthalmology 115, 363–370 (2008).

    Article  Google Scholar 

  5. Vitale, S., Ellwein, L., Cotch, M.F., Ferris, F.L. III & Sperduto, R. Prevalence of refractive error in the United States, 1999–2004. Arch. Ophthalmol. 126, 1111–1119 (2008).

    Article  Google Scholar 

  6. McBrien, N.A. & Gentle, A. Role of the sclera in the development and pathological complications of myopia. Prog. Retin. Eye Res. 22, 307–338 (2003).

    Article  CAS  Google Scholar 

  7. Saw, S.M. et al. How blinding is pathological myopia? Br. J. Ophthalmol. 90, 525–526 (2006).

    Article  Google Scholar 

  8. Curtin, B.J. & Karlin, D.B. Axial length measurements and fundus changes of the myopic eye. Am. J. Ophthalmol. 1, 42–53 (1971).

    Article  Google Scholar 

  9. Saw, S.M., Gazzard, G., Shih-Yen, E.C. & Chua, W.H. Myopia and associated pathological complications. Ophthalmic Physiol. Opt. 25, 381–391 (2005).

    Article  Google Scholar 

  10. Tano, Y. et al. Pathologic myopia: where are we now? Am. J. Ophthalmol. 134, 645–660 (2002).

    Article  Google Scholar 

  11. Young, T.L. et al. Molecular genetics of human myopia: an update. Optom. Vis. Sci. 86, E8–E22 (2009).

    Article  Google Scholar 

  12. Dirani, M. et al. Outdoor activity and myopia in Singapore teenage children. Br. J. Ophthalmol. 93, 997–1000 (2009).

    Article  CAS  Google Scholar 

  13. McBrien, N.A. et al. Myopia: recent advances in molecular studies; prevalence, progression and risk factors; emmetropization; therapies; optical links; peripheral refraction; sclera and ocular growth; signalling cascades; and animal models. Optom. Vis. Sci. published online, doi:10.1097/01.opx.0000344146.84135.68 (19 December 2008).

  14. Saw, S.M., Hong, C.Y., Chia, K.S., Stone, R.A. & Tan, D. Nearwork and myopia in young children. Lancet 357, 390 (2001).

    Article  CAS  Google Scholar 

  15. Young, T.L., Metlapally, R. & Shay, A.E. Complex trait genetics of refractive error. Arch. Ophthalmol. 125, 38–48 (2007).

    Article  CAS  Google Scholar 

  16. Eystathioy, T., Jakymiw, A., Fujita, D.J., Fritzler, M.J. & Chan, E.K. Human autoantibodies to a novel Golgi protein golgin-67: high similarity with golgin-95/gm 130 autoantigen. J. Autoimmun. 14, 179–187 (2000).

    Article  CAS  Google Scholar 

  17. Jobling, A.I., Gentle, A., Metlapally, R., McGowan, B.J. & McBrien, N.A. Regulation of scleral cell contraction by transforming growth factor-beta and stress: competing roles in myopic eye growth. J. Biol. Chem. 284, 2072–2079 (2009).

    Article  CAS  Google Scholar 

  18. Kihara, A.H. et al. Connexin36, an essential element in the rod pathway, is highly expressed in the essentially rodless retina of Gallus gallus. J. Comp. Neurol. 512, 651–663 (2009).

    Article  CAS  Google Scholar 

  19. Deans, M.R., Volgyi, B., Goodenough, D.A., Bloomfield, S.A. & Paul, D.L. Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36, 703–712 (2002).

    Article  CAS  Google Scholar 

  20. Striedinger, K. et al. Loss of connexin36 increases retinal cell vulnerability to secondary cell loss. Eur. J. Neurosci. 22, 605–616 (2005).

    Article  Google Scholar 

  21. Güldenagel, M. et al. Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J. Neurosci. 21, 6036–6044 (2001).

    Article  Google Scholar 

  22. Rong, P. et al. Disruption of Gja8 (a8 connexin) in mice leads to microphthalmia associated with retardation of lens growth and lens fiber maturation. Development 129, 167–174 (2002).

    CAS  PubMed  Google Scholar 

  23. White, T.W. Targeted ablation of Connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J. Cell Biol. 143, 815–825 (1998).

    Article  CAS  Google Scholar 

  24. Heintzman, N.D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112 (2009).

    Article  CAS  Google Scholar 

  25. Heintzman, N.D. & Ren, B. Finding distal regulatory elements in the human genome. Curr. Opin. Genet. Dev. 19, 541–549 (2009).

    Article  CAS  Google Scholar 

  26. Delaloy, C. et al. Deletion of WNK1 first intron results in misregulation of both isoforms in renal and extrarenal tissues. Hypertension 52, 1149–1154 (2008).

    Article  CAS  Google Scholar 

  27. Mihaly, J. et al. Dissecting the regulatory landscape of the Abd-B gene of the bithorax complex. Development 133, 2983–2993 (2006).

    Article  CAS  Google Scholar 

  28. Hysi, P.G., Young, T.L. et al. A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25 which contains the RASGRF1 gene. Nat. Genet. advance online publication, doi:10.1038/ng.664 (12 September 2010).

  29. Jones, C. & Moses, K. Cell-cycle regulation and cell-type specification in the developing Drosophila compound eye. Semin. Cell Dev. Biol. 15, 75–81 (2004).

    Article  CAS  Google Scholar 

  30. Fernández-Medarde, A. et al. RasGRF1 disruption causes retinal photoreception defects and associated transcriptomic alterations. J. Neurochem. 110, 641–652 (2009).

    Article  Google Scholar 

  31. Lettre, G. et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nat. Genet. 40, 584–591 (2008).

    Article  CAS  Google Scholar 

  32. Hofman, A. et al. The Rotterdam Study: 2010 objectives and design update. Eur. J. Epidemiol. 24, 553–572 (2009).

    Article  Google Scholar 

  33. Spector, T.D. & MacGregor, A.J. The St. Thomas' UK Adult Twin Registry. Twin Res. 5, 440–443 (2002).

    Article  Google Scholar 

  34. Estrada, K. et al. GRIMP: A web- and grid-based tool for high-speed analysis of large-scale genome-wide association using imputed data. Bioinformatics 25, 2750–2752 (2009).

    Article  CAS  Google Scholar 

  35. Aulchenko, Y.S., Ripke, S., Isaacs, A. & van Duijn, C.M. GenABEL: an R library for genome-wide association analysis. Bioinformatics 23, 1294–1296 (2007).

    Article  CAS  Google Scholar 

  36. Abecasis, G.R., Cherny, S.S., Cookson, W.O. & Cardon, L.R. Merlin–rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30, 97–101 (2002).

    Article  CAS  Google Scholar 

  37. Booij, J.C. et al. Functional annotation of the human retinal pigment epithelium transcriptome. BMC Genomics 20, 10–164 (2009).

    Google Scholar 

  38. Van Soest, S.S. et al. Comparison of human retinal pigment epithelium gene expression in macula and periphery highlights potential topographic differences in Bruch's membrane. Mol. Vis. 10, 1608–1617 (2007).

    Google Scholar 

Download references

Acknowledgements

Major funding of the work performed in The Netherlands came from the Netherlands Organisation of Scientific Research (NWO); Erasmus Medical Center and Erasmus University, Rotterdam, The Netherlands; Netherlands Organization for Health Research and Development (ZonMw); UitZicht; the Research Institute for Diseases in the Elderly; the Ministry of Education, Culture and Science; the Ministry for Health, Welfare and Sports; the European Commission (DG XII); the Municipality of Rotterdam; the Netherlands Genomics Initiative (NGI)/NWO; Center for Medical Systems Biology of NGI; Lijf en Leven; M.D. Fonds; H. Stichting; Oogfonds Nederland; Stichting Nederlands Oogheelkundig Onderzoek; Swart van Essen; Bevordering van Volkskracht; Blindenhulp; Landelijke Stichting voor Blinden en Slechtzienden; Rotterdamse Vereniging voor Blindenbelangen; OOG; Algemene Nederlandse Vereniging ter Voorkoming van Blindheid; the Rotterdam Eye Hospital Research Foundation; Laméris Ootech; Topcon Europe; and Heidelberg Engineering. We thank A. Hooghart, C. Brussee, R. Bernaerts-Biskop, P. van Hilten, P. Arp, M. Jhamai, M. Moorhouse, J. Vergeer, M. Verkerk, S. Bervoets and P. van der Spek for help in execution of the study.

TwinsUK acknowledges the Wellcome Trust, the European Union MyEuropia Marie Curie Research Training Network, Guide Dogs for the Blind Association, the European Community's Seventh Framework Programme (FP7/2007-2013)/grant agreement HEALTH-F2-2008-201865-GEFOS and (FP7/2007-2013), European Network of Genetic and Genomic Epidemiology (ENGAGE) project grant agreement HEALTH-F4-2007-201413 and the FP-5 GenomEUtwin Project (QLG2-CT-2002-01254), Biotechnology and Biological Sciences Research Council (G20234), Department of Health via US National Institutes of Health, (National Eye Institute grant RO1EY018246), and the Center for Inherited Disease Research. TwinsUK thanks G. Surdulescu, L. Peltonen, P. Deloukas, M. Lathrop, D. Goldstein, A. Palotie and C. Day for help in execution of the study and analyses.

Author information

Authors and Affiliations

Authors

Contributions

A.M.S., V.J.M.V. and C.C.W.K. performed analyses and drafted the manuscript. C.M.v.D., B.A.O., F.R., A.G.U., A.H., P.T.V.M.d.J., J.R.V. and C.C.W.K. designed the study and obtained funding. D.D.G.D., L.M.v.K., L.H., W.D.R., M.C., R.K., J.J.M.W.-A., T.G.M.F.G., F.C.C.R. and S.M.A.S. helped in data collection. A.J.M.H.V., M.K.I., N.A., M.S., Y.S.A., A.A.B.B., A.A.L.J.v.O. and A.I. participated in the genetic analyses. P.G.H., T.L.Y., D.A.M., T.D.S. and C.J.H. were responsible for data from the TwinsUK study. M.K.I., R.W.A.M.K., G.v.R., P.G.H., C.J.H., C.M.v.D., A.J.M.H.V., B.A.O., J.R.V. and A.A.B.B. critically reviewed the manuscript.

Corresponding author

Correspondence to Caroline C W Klaver.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–5 and Supplementary Figues 1–3. (PDF 449 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solouki, A., Verhoeven, V., van Duijn, C. et al. A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14. Nat Genet 42, 897–901 (2010). https://doi.org/10.1038/ng.663

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.663

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing