Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Options available—from start to finish—for obtaining data from DNA microarrays II

Abstract

Microarray technology has undergone a rapid evolution. With widespread interest in large-scale genomic research, an abundance of equipment and reagents have now become available and affordable to a large cross section of the scientific community. As protocols become more refined, careful investigators are able to obtain good quality microarray data quickly. In most recent times, however, perhaps one of the biggest obstacles researchers face is not the manufacture and use of microarrays at the bench, but storage and analysis of the array data. This review discusses the most recent equipment, reagents and protocols available to the researcher, as well as describing data analysis and storage options available from the evolving field of microarray informatics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of commercial slides for printing of cDNA material.
Figure 2: Output from the local mean normalization step of SNOMAD normalization.

Similar content being viewed by others

References

  1. Bowtell, D.D. Options available—from start to finish—for obtaining expression data by microarray. Nature Genet. 21, 25–32 (1999).

    Article  CAS  Google Scholar 

  2. Singh-Gasson, S. et al. Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nature Biotechnol. 17, 974–978 (1999).

    Article  CAS  Google Scholar 

  3. Lipshutz, R.J., Fodor, S.P., Gingeras, T.R. & Lockhart, D.J. High density synthetic oligonucleotide arrays. Nature Genet. 21, 20–24 (1999).

    Article  CAS  Google Scholar 

  4. Hughes, T.R. et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature Biotechnol. 19, 342–347 (2001).

    Article  CAS  Google Scholar 

  5. Pollack, J.R. et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genet. 23, 41–46 (1999).

    Article  CAS  Google Scholar 

  6. Albertson, D.G. et al. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nature Genet. 25, 144–146 (2000).

    Article  CAS  Google Scholar 

  7. Snijders, A.M. et al. Assembly of microarrays for genome-wide measurement of DNA copy number. Nature Genet. 29, 263–264 (2001).

    Article  CAS  Google Scholar 

  8. Pinkel, D. et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genet. 20, 207–211 (1998).

    Article  CAS  Google Scholar 

  9. Hayward, R.E. et al. Shotgun DNA microarrays and stage-specific gene expression in Plasmodium falciparum malaria. Mol. Microbiol. 35, 6–14 (2000).

    Article  CAS  Google Scholar 

  10. El-Sayed, N.M., Hegde, P., Quackenbush, J., Melville, S.E. & Donelson, J.E. The African trypanosome genome. Int. J. Parasitol. 30, 329–345 (2000).

    Article  CAS  Google Scholar 

  11. Lee, J.M., Williams, M.E., Tingey, S.V. & Rafalski, J.A. DNA array profiling of gene expression changes during maize embryo development. Funct. Integr. Genomics 2, 13–27 (2002).

    Article  CAS  Google Scholar 

  12. Osoegawa, K. et al. A bacterial artificial chromosome library for sequencing the complete human genome. Genome Res. 11, 483–496 (2001).

    Article  CAS  Google Scholar 

  13. Halgren, R.G., Fielden, M.R., Fong, C.J. & Zacharewski, T.R. Assessment of clone identity and sequence fidelity for 1189 IMAGE cDNA clones. Nucleic Acids Res. 29, 582–588 (2001).

    Article  CAS  Google Scholar 

  14. Knight, J. When the chips are down. Nature 410, 860–861 (2001).

    Article  CAS  Google Scholar 

  15. Bowtell, D.D. & Sambrook, J.F. DNA Microarrays: A Molecular Cloning Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2002).

    Google Scholar 

  16. Relogio, A., Schwager, C., Richter, A., Ansorge, W. & Valcarcel, J. Optimization of oligonucleotide-based DNA microarrays. Nucleic Acids Res. 30, e51 (2002).

    Article  Google Scholar 

  17. Rouillard, J.M., Herbert, C.J. & Zuker, M. OligoArray: genome-scale oligonucleotide design for microarrays. Bioinformatics 18, 486–487 (2002).

    Article  CAS  Google Scholar 

  18. DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).

    Article  CAS  Google Scholar 

  19. Wei, Y. et al. High-density microarray-mediated gene expression profiling of Escherichia coli. J. Bacteriol. 183, 545–556 (2001).

    Article  CAS  Google Scholar 

  20. Hegde, P. et al. A concise guide to cDNA microarray analysis. Biotechniques 29, 548–556 (2000).

    Article  CAS  Google Scholar 

  21. Schena, M. et al. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc. Natl Acad. Sci. USA 93, 10614–10619 (1996).

    Article  CAS  Google Scholar 

  22. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  23. Bertucci, F. et al. Sensitivity issues in DNA array-based expression measurements and performance of nylon microarrays for small samples. Hum. Mol. Genet. 8, 1715–1722 (1999).

    Article  CAS  Google Scholar 

  24. Yue, H. et al. An evaluation of the performance of cDNA microarrays for detecting changes in global mRNA expression. Nucleic Acids Res. 29, E41 (2001).

    Article  CAS  Google Scholar 

  25. Wang, X., Ghosh, S. & Guo, S.W. Quantitative quality control in microarray image processing and data acquisition. Nucleic Acids Res 29, E75 (2001).

    Article  CAS  Google Scholar 

  26. Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Med. 8, 500–508 (2002).

    Article  CAS  Google Scholar 

  27. Alizadeh, A.A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  Google Scholar 

  28. Bittner, M. et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536–540 (2000).

    Article  CAS  Google Scholar 

  29. Dhanasekaran, S.M. et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001).

    Article  CAS  Google Scholar 

  30. Golub, T.R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  Google Scholar 

  31. Hedenfalk, I. et al. Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344, 539–548 (2001).

    Article  CAS  Google Scholar 

  32. Shipp, M.A. et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Med. 8, 68–74 (2002).

    Article  CAS  Google Scholar 

  33. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  Google Scholar 

  34. van't Veer, L.J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  Google Scholar 

  35. Volm, M., Koomagi, R., Mattern, J. & Efferth, T. Expression profile of genes in non-small cell lung carcinomas from long-term surviving patients. Clin. Cancer Res. 8, 1843–1848 (2002).

    CAS  Google Scholar 

  36. Miki, R. et al. Delineating developmental and metabolic pathways in vivo by expression profiling using the RIKEN set of 18,816 full-length enriched mouse cDNA arrays. Proc. Natl Acad. Sci. USA 98, 2199–2204 (2001).

    Article  CAS  Google Scholar 

  37. Iyer, V.R. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999).

    Article  CAS  Google Scholar 

  38. Lo, A.W. et al. A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res. 11, 448–457 (2001).

    Article  CAS  Google Scholar 

  39. Shannon, M.F. & Rao, S. Transcription. Of chips and ChIPs. Science 296, 666–669 (2002).

    Article  CAS  Google Scholar 

  40. Ahrendt, S.A. et al. Rapid p53 sequence analysis in primary lung cancer using an oligonucleotide probe array. Proc. Natl Acad. Sci. USA 96, 7382–7387 (1999).

    Article  CAS  Google Scholar 

  41. Lindblad-Toh, K. et al. Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nature Biotechnol. 18, 1001–1005 (2000).

    Article  CAS  Google Scholar 

  42. Lindblad-Toh, K. et al. Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse. Nature Genet. 24, 381–386 (2000).

    Article  CAS  Google Scholar 

  43. Ziauddin, J. & Sabatini, D.M. Microarrays of cells expressing defined cDNAs. Nature 411, 107–110 (2001).

    Article  CAS  Google Scholar 

  44. Kerr, M.K. & Churchill, G.A. Statistical design and the analysis of gene expression microarray data. Genet Res. 77, 123–128 (2001).

    CAS  Google Scholar 

  45. Dudley, A.M., Aach, J., Steffen, M.A. & Church, G.M. Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range. Proc. Natl Acad. Sci. USA 99, 7554–7559 (2002).

    Article  CAS  Google Scholar 

  46. Hill, A.A. et al. Evaluation of normalization procedures for oligonucleotide array data based on spiked cRNA controls. Genome Biol. 2, research0055 (2001).

  47. Yang, Y.H. et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30, e15 (2002).

    Article  Google Scholar 

  48. Van Gelder, R.N. et al. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl Acad. Sci. USA 87, 1663–1667 (1990).

    Article  CAS  Google Scholar 

  49. Karsten, S.L., Van Deerlin, V.M., Sabatti, C., Gill, L.H. & Geschwind, D.H. An evaluation of tyramide signal amplification and archived fixed and frozen tissue in microarray gene expression analysis. Nucleic Acids Res. 30, E4 (2002).

    Article  Google Scholar 

  50. Colantuoni, C., Henry, G., Zeger, S. & Pevsner, J. Local mean normalization of microarray element signal intensities across an array surface: quality control and correction of spatially systematic artifacts. Biotechniques 32, 1316–1320 (2002).

    Article  CAS  Google Scholar 

  51. Stoeckert, C.J., Causton, H.C. & Ball, C.A. Microarray databases: standards and ontologies. Nature Genet. 32, 469–473 (2002).

    Article  CAS  Google Scholar 

  52. Saal, L.H. et al. BioArray software environment: a platform for comprehensive management and analysis of microarray data. Genome Biol. 3, software 0003.1–0003.6 (2002).

    Article  Google Scholar 

  53. Fielden, M.R., Halgren, R.G., Dere, E. & Zacharewski, T.R. GP3: GenePix post-processing program for automated analysis of raw microarray data. Bioinformatics 18, 771–773 (2002).

    Article  CAS  Google Scholar 

  54. Geschwind, D.H. Sharing gene expression data: an array of options. Nat. Rev. Neurosci. 2, 435–438 (2001).

    Article  CAS  Google Scholar 

  55. Kellam, P. Microarray gene expression database: progress towards an international repository of gene expression data. Genome Biol. 2, reports4011 (2001).

  56. Microarrays standards at last. Nature 419, 323 (2002).

  57. Coming to terms with microarrays. Nature Genet. 32, 333–334 (2002).

  58. Gardiner-Garden, M. & Littlejohn, T.G. A comparison of microarray databases. Brief. Bioinform. 2, 143–158 (2001).

    Article  CAS  Google Scholar 

  59. Bilban, M., Buehler, L.K., Head, S., Desoye, G. & Quaranta, V. Normalizing DNA microarray data. Curr. Issues Mol. Biol. 4, 57–64 (2002).

    CAS  Google Scholar 

  60. Quackenbush, J. Microarray data normalization and transformation. Nature Genet. 32, 496–501 (2002).

    Article  CAS  Google Scholar 

  61. Ripley, B.D. The {R} project in statistical computing. MSOR Connections. Newsletter of the LTSN Maths, Stats & OR Network (The University of Birmingham, Edgbaston, U.K.) 1, 23–25 (2001).

    Article  Google Scholar 

  62. Slonim, D. From patterns to pathways: gene expression data analysis comes of age. Nature Genet. 32, 502–508 (2002).

    Article  CAS  Google Scholar 

  63. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  64. Brown, M.P. et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl Acad. Sci. USA 97, 262–267 (2000).

    Article  CAS  Google Scholar 

  65. Pomeroy, S.L. et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002).

    Article  CAS  Google Scholar 

  66. Khan, J. et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Med. 7, 673–679 (2001).

    Article  CAS  Google Scholar 

  67. Xu, Y. et al. Artificial neural networks and gene filtering distinguish between global gene expression profiles of Barrett's esophagus and esophageal cancer. Cancer Res. 62, 3493–3497 (2002).

    CAS  Google Scholar 

  68. Ramaswamy, S. et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl Acad. Sci. USA 98, 15149–15154 (2001).

    Article  CAS  Google Scholar 

  69. Holmes, G. & Hall, M.A. A development environment for predictive modelling in foods. Int. J. Food Microbiol. 73, 351–362 (2002).

    Article  CAS  Google Scholar 

  70. The Gene Ontology Consortium. Creating the gene ontology resource: design and implementation. Genome Res. 11, 1425–1433 (2001).

  71. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nature Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  72. Delozier, E.P. & Lingle, V.A. MEDLINE and MeSH: challenges for end users. Med. Ref. Serv. Q 11, 29–46 (1992).

    Article  CAS  Google Scholar 

  73. Lowe, H.J. & Barnett, G.O. Understanding and using the medical subject headings (MeSH) vocabulary to perform literature searches. J. Am. Med. Assoc. 271, 1103–1108 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Murphy, K. Belfrage, S. Katsabanis and D. Diyagama for their assistance with all aspects of microarray production and use and to Cold Spring Harbour Laboratory Press, in particular K. Jaansen, J. Sambrook and the contributors to Microarrays, A Molecular Cloning Manual, for granting permission to reproduce tables included in this manuscript. The PMCI microarray facility was established with the generous support of the Ian Potter Foundation and the Wellcome Trust. The ongoing operation of the Facility is supported by a Science Technology Innovation Initiative Grant from the State Government of Victoria, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D.L. Bowtell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holloway, A., van Laar, R., Tothill, R. et al. Options available—from start to finish—for obtaining data from DNA microarrays II. Nat Genet 32 (Suppl 4), 481–489 (2002). https://doi.org/10.1038/ng1030

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1030

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing