Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots

Abstract

Recent studies of human populations suggest that the genome consists of chromosome segments that are ancestrally conserved ('haplotype blocks'; refs. 13) and have discrete boundaries defined by recombination hot spots4,5. Using publicly available genetic markers6, we have constructed a first-generation haplotype map of chromosome 19. As expected for this marker density7, approximately one-third of the chromosome is encompassed within haplotype blocks. Evolutionary modeling of the data indicates that recombination hot spots are not required to explain most of the observed blocks, providing that marker ascertainment and the observed marker spacing are considered. In contrast, several long blocks are inconsistent with our evolutionary models, and different mechanisms could explain their origins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Marker allele frequencies and physical spacing on chromosome 19.
Figure 2: Patterns of LD on chromosome 19.
Figure 3: Comparisons of observed block distributions (bars) and evolutionary model expectations (lines) under uniform recombination.
Figure 4: Distribution of block lengths in different marker sets.

Similar content being viewed by others

References

  1. Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J. & Lander, E.S. High-resolution haplotype structure in the human genome. Nat. Genet. 29, 229–232 (2001).

    Article  CAS  Google Scholar 

  2. Gabriel, S.B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002).

    Article  CAS  Google Scholar 

  3. Reich, D.E. et al. Human genome sequence variation and the influence of gene history, mutation and recombination. Nat. Genet. 32, 135–142 (2002).

    Article  CAS  Google Scholar 

  4. Goldstein, D.B. Islands of linkage disequilibrium. Nat. Genet. 29, 109–111 (2001).

    Article  CAS  Google Scholar 

  5. Jeffreys, A.J., Kauppi, L. & Neumann, R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat. Genet. 29, 217–222 (2001).

    Article  CAS  Google Scholar 

  6. Sachidanandam, R. et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001).

    Article  CAS  Google Scholar 

  7. Dawson, E. et al. A first generation linkage disequilibrium map of human chromosome 22. Nature 418, 544–548 (2002).

    Article  CAS  Google Scholar 

  8. Roses, A.D. Pharmacogenetics and the practice of medicine. Nature 405, 857–865 (2000).

    Article  CAS  Google Scholar 

  9. Patil, N. et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294, 1719–1723 (2001).

    Article  CAS  Google Scholar 

  10. Casci, T. Haplotype mapping: shortcut around the block. Nat. Rev. Genet. 3, 573 (2002).

    Article  CAS  Google Scholar 

  11. Weiss, K.M. & Clark, A.G. Linkage disequilibrium and the mapping of complex human traits. Trends Genet. 18, 19–24 (2002).

    Article  CAS  Google Scholar 

  12. Couzin, J. Genomics. New mapping project splits the community. Science 296, 1391–1393 (2002).

    Article  CAS  Google Scholar 

  13. Ardlie, K.G., Kruglyak, L. & Seielstad, M. Patterns of linkage disequilibrium in the human genome. Nat. Rev. Genet. 3, 299–309 (2002).

    Article  CAS  Google Scholar 

  14. Jeffreys, A.J., Ritchie, A. & Neumann, R. High resolution analysis of haplotype diversity and meiotic crossover in the human TAP2 recombination hotspot. Hum. Mol. Genet. 9, 725–733 (2000).

    Article  CAS  Google Scholar 

  15. Johnson, G.C. et al. Haplotype tagging for the identification of common disease genes. Nat. Genet. 29, 233–237 (2001).

    Article  CAS  Google Scholar 

  16. Subrahmanyan, L., Eberle, M.A., Clark, A.G., Kruglyak, L. & Nickerson, D.A. Sequence variation and linkage disequilibrium in the human T-cell receptor β (TCRB) locus. Am. J. Hum. Genet. 69, 381–395 (2001).

    Article  CAS  Google Scholar 

  17. Dausset, J. et al. Centre d'etude du polymorphisme humain (CEPH): collaborative genetic mapping of the human genome. Genomics 6, 575–577 (1990).

    Article  CAS  Google Scholar 

  18. Petes, T.D. Meiotic recombination hot spots and cold spots. Nat. Rev. Genet. 2, 360–369 (2001).

    Article  CAS  Google Scholar 

  19. Hudson, R.R. Properties of a neutral allele model with intragenic recombination. Theor. Popul. Biol. 23, 183–201 (1983).

    Article  CAS  Google Scholar 

  20. Griffiths, R.C. & Marjoram, P. Ancestral inference from samples of DNA sequences with recombination. J. Comput. Biol. 3, 479–502 (1996).

    Article  CAS  Google Scholar 

  21. Kong, A. et al. A high-resolution recombination map of the human genome. Nat. Genet. 31, 242–247 (2002).

    Article  Google Scholar 

  22. Smith, R.A., Ho, P.J., Clegg, J.B., Kidd, J.R. & Thein, S.L. Recombination breakpoints in the human β-globin gene cluster. Blood 92, 4415–4421 (1998).

    CAS  Google Scholar 

  23. Hartl, D.L. & Clark, A.G. Principles of Population Genetics (Sinauer Associates, Sunderland, Massachusetts, 1997).

    Google Scholar 

  24. Thompson, E. Pedigree Analysis in Human Genetics (Johns Hopkins University Press, Baltimore, Maryland, 1986).

    Google Scholar 

  25. McKeigue, P.M. Mapping genes underlying ethnic differences in disease risk by linkage disequilibrium in recently admixed populations. Am. J. Hum. Genet. 60, 188–196 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bell, P.A. et al. SNPstream UHT: ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. Biotechniques (Suppl.) 70–72, 74, 76–77 (2002).

  27. Fan, J.B. et al. Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays. Genome Res. 10, 853–860 (2000).

    Article  CAS  Google Scholar 

  28. Weir, B.S. Genetic Data Analysis II. 113–138 (Sinauer Associates, Sunderland, Massachusetts, 1996).

    Google Scholar 

  29. Abecasis, G.R., Cherny, S.S., Cookson, W.O. & Cardon, L.R. Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30, 97–101 (2002).

    Article  CAS  Google Scholar 

  30. Eberle, M.A. & Kruglyak, L. An analysis of strategies for discovery of single-nucleotide polymorphisms. Genet. Epidemiol. 19, S29–S35 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Marcella, J. Ball and R. Tomacelli for advice and guidance during the development of this project at Orchid. R.S. thanks the cancer center at Cold Spring Harbor Laboratory for support. R.L., A.P.M., J.B. and L.R.C. were supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.R. Cardon.

Ethics declarations

Competing interests

Authors affiliated with Orchid Biosciences are employed by or have personal financial interests in the company, which specializes in high-throughput genotyping technologies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, M., Lawrence, R., Sachidanandam, R. et al. Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nat Genet 33, 382–387 (2003). https://doi.org/10.1038/ng1100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing