Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ARIH2 is essential for embryogenesis, and its hematopoietic deficiency causes lethal activation of the immune system

Abstract

The E3 ligase ARIH2 has an unusual structure and mechanism of elongating ubiquitin chains. To understand its physiological role, we generated gene-targeted mice deficient in ARIH2. ARIH2 deficiency resulted in the embryonic death of C57BL/6 mice. On a mixed genetic background, the lethality was attenuated, with some mice surviving beyond weaning and then succumbing to an aggressive multiorgan inflammatory response. We found that in dendritic cells (DCs), ARIH2 caused degradation of the inhibitor IκBβ in the nucleus, which abrogated its ability to sequester, protect and transcriptionally coactivate the transcription factor subunit p65 in the nucleus. Loss of ARIH2 caused dysregulated activation of the transcription factor NF-κB in DCs, which led to lethal activation of the immune system in ARIH2-sufficent mice reconstituted with ARIH2-deficient hematopoietic stem cells. Our data have therapeutic implications for targeting ARIH2 function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ARIH2 deficiency causes an overwhelming inflammatory response.
Figure 2: Chimeras generated with Arih2−/− cells develop lethal systemic inflammatory responses.
Figure 3: Arih2−/− T and B cells do not have intrinsic signaling defects.
Figure 4: ARIH2 does not affect the function of Treg or Teff cells.
Figure 5: Loss of ARIH2 in DCs leads to spurious activation, proinflammatory responses and tissue destruction.
Figure 6: Loss of ARIH2 leads to hyperactive and sustained NF-κB signaling.

Similar content being viewed by others

References

  1. Marín, I., Lucas, J.I., Gradilla, A.C. & Ferrus, A. Parkin and relatives: the RBR family of ubiquitin ligases. Physiol. Genomics 17, 253–263 (2004).

    PubMed  Google Scholar 

  2. van der Reijden, B.A., Erpelinck-Verschueren, C.A., Lowenberg, B. & Jansen, J.H. TRIADs: a new class of proteins with a novel cysteine-rich signature. Protein Sci. 8, 1557–1561 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tan, N.G. et al. Characterisation of the human and mouse orthologues of the Drosophila ariadne gene. Cytogenet. Cell Genet. 90, 242–245 (2000).

    CAS  PubMed  Google Scholar 

  4. Aguilera, M., Oliveros, M., Martinez-Padron, M., Barbas, J.A. & Ferrus, A. Ariadne-1: a vital Drosophila gene is required in development and defines a new conserved family of ring-finger proteins. Genetics 155, 1231–1244 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wenzel, D.M., Lissounov, A., Brzovic, P.S. & Klevit, R.E. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474, 105–108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chuang, T.H. & Ulevitch, R.J. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat. Immunol. 5, 495–502 (2004).

    CAS  PubMed  Google Scholar 

  7. Fearns, C., Pan, Q., Mathison, J.C. & Chuang, T.H. Triad3A regulates ubiquitination and proteasomal degradation of RIP1 following disruption of Hsp90 binding. J. Biol. Chem. 281, 34592–34600 (2006).

    CAS  PubMed  Google Scholar 

  8. Nakhaei, P. et al. The E3 ubiquitin ligase Triad3A negatively regulates the RIG-I/MAVS signaling pathway by targeting TRAF3 for degradation. PLoS Pathog. 5, e1000650 (2009).

    PubMed  PubMed Central  Google Scholar 

  9. Ghosh, S. & Hayden, M.S. New regulators of NF-κB in inflammation. Nat. Rev. Immunol. 8, 837–848 (2008).

    CAS  PubMed  Google Scholar 

  10. Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009).

    CAS  PubMed  Google Scholar 

  11. Mladek, C., Guger, K. & Hauser, M.T. Identification and characterization of the ARIADNE gene family in Arabidopsis. A group of putative E3 ligases. Plant Physiol. 131, 27–40 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Marteijn, J.A. et al. The ubiquitin ligase Triad1 inhibits myelopoiesis through UbcH7 and Ubc13 interacting domains. Leukemia 23, 1480–1489 (2009).

    CAS  PubMed  Google Scholar 

  13. Wang, H., Bei, L., Shah, C.A., Horvath, E. & Eklund, E.A. HoxA10 influences protein ubiquitination by activating transcription of ARIH2, the gene encoding Triad1. J. Biol. Chem. 286, 16832–16845 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pietschmann, K. et al. Differential regulation of PML-RAR α stability by the ubiquitin ligases SIAH1/SIAH2 and TRIAD1. Int. J. Biochem. Cell Biol. 44, 132–138 (2012).

    CAS  PubMed  Google Scholar 

  15. Lee, E.G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Starr, R. et al. Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proc. Natl. Acad. Sci. USA 95, 14395–14399 (1998).

    CAS  PubMed  Google Scholar 

  17. Yeh, W.C. et al. Early lethality, functional NF-κB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 7, 715–725 (1997).

    CAS  PubMed  Google Scholar 

  18. Chiffoleau, E. et al. TNF receptor-associated factor 6 deficiency during hemopoiesis induces Th2-polarized inflammatory disease. J. Immunol. 171, 5751–5759 (2003).

    CAS  PubMed  Google Scholar 

  19. Turer, E.E. et al. Homeostatic MyD88-dependent signals cause lethal inflamMation in the absence of A20. J. Exp. Med. 205, 451–464 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nguyen, L.T. et al. TRAF2 deficiency results in hyperactivity of certain TNFR1 signals and impairment of CD40-mediated responses. Immunity 11, 379–389 (1999).

    CAS  PubMed  Google Scholar 

  21. Metcalf, D., Di Rago, L., Mifsud, S., Hartley, L. & Alexander, W.S. The development of fatal myocarditis and polymyositis in mice heterozygous for IFN-γ and lacking the SOCS-1 gene. Proc. Natl. Acad. Sci. USA 97, 9174–9179 (2000).

    CAS  PubMed  Google Scholar 

  22. Alexander, W.S. et al. SOCS1 is a critical inhibitor of interferon γ signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell 98, 597–608 (1999).

    CAS  PubMed  Google Scholar 

  23. Asseman, C., Mauze, S., Leach, M.W., Coffman, R.L. & Powrie, F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 190, 995–1004 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lutz, M.B. et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223, 77–92 (1999).

    CAS  PubMed  Google Scholar 

  25. Naik, S.H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 8, 1217–1226 (2007).

    CAS  PubMed  Google Scholar 

  26. Ohashi, P.S. et al. Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65, 305–317 (1991).

    CAS  PubMed  Google Scholar 

  27. Oldstone, M.B., Nerenberg, M., Southern, P., Price, J. & Lewicki, H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 65, 319–331 (1991).

    CAS  PubMed  Google Scholar 

  28. Dissanayake, D. et al. Nuclear factor-κB1 controls the functional maturation of dendritic cells and prevents the activation of autoreactive T cells. Nat. Med. 17, 1663–1667 (2011).

    CAS  PubMed  Google Scholar 

  29. Lin, A.C., Dissanayake, D., Dhanji, S., Elford, A.R. & Ohashi, P.S. Different toll-like receptor stimuli have a profound impact on cytokines required to break tolerance and induce autoimmunity. PLoS ONE 6, e23940 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Garza, K.M. et al. Role of antigen-presenting cells in mediating tolerance and autoimmunity. J. Exp. Med. 191, 2021–2027 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Suyang, H., Phillips, R., Douglas, I. & Ghosh, S. Role of unphosphorylated, newly synthesized IκBβ in persistent activation of NF-κB. Mol. Cell. Biol. 16, 5444–5449 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rao, P. et al. IκBβ acts to inhibit and activate gene expression during the inflammatory response. Nature 466, 1115–1119 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Scheibel, M. et al. IκBβ is an essential co-activator for LPS-induced IL-1β transcription in vivo. J. Exp. Med. 207, 2621–2630 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. McKinsey, T.A., Chu, Z.L. & Ballard, D.W. Phosphorylation of the PEST domain of IκBβ regulates the function of NF-κB/IκBβ complexes. J. Biol. Chem. 272, 22377–22380 (1997).

    CAS  PubMed  Google Scholar 

  35. Herold, M.J., van den Brandt, J., Seibler, J. & Reichardt, H.M. Inducible and reversible gene silencing by stable integration of an shRNA-encoding lentivirus in transgenic rats. Proc. Natl. Acad. Sci. USA 105, 18507–18512 (2008).

    CAS  PubMed  Google Scholar 

  36. Geng, H., Wittwer, T., Dittrich-Breiholz, O., Kracht, M. & Schmitz, M.L. Phosphorylation of NF-κB p65 at Ser468 controls its COMMD1-dependent ubiquitination and target gene-specific proteasomal elimination. EMBO Rep. 10, 381–386 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schwabe, R.F. & Sakurai, H. IKKβ phosphorylates p65 at S468 in transactivaton domain 2. FASEB J. 19, 1758–1760 (2005).

    CAS  PubMed  Google Scholar 

  38. Tanaka, T., Grusby, M.J. & Kaisho, T. PDLIM2-mediated termination of transcription factor NF-κB activation by intranuclear sequestration and degradation of the p65 subunit. Nat. Immunol. 8, 584–591 (2007).

    CAS  PubMed  Google Scholar 

  39. Saccani, S., Marazzi, I., Beg, A.A. & Natoli, G. Degradation of promoter-bound p65/RelA is essential for the prompt termination of the nuclear factor κB response. J. Exp. Med. 200, 107–113 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ryo, A. et al. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 12, 1413–1426 (2003).

    CAS  PubMed  Google Scholar 

  41. Maine, G.N., Mao, X., Komarck, C.M. & Burstein, E. COMMD1 promotes the ubiquitination of NF-κB subunits through a cullin-containing ubiquitin ligase. EMBO J. 26, 436–447 (2007).

    CAS  PubMed  Google Scholar 

  42. Ruland, J. et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell 104, 33–42 (2001).

    CAS  PubMed  Google Scholar 

  43. Pasparakis, M., Alexopoulou, L., Episkopou, V. & Kollias, G. Immune and inflammatory responses in TNFα-deficient mice: a critical requirement for TNFα in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184, 1397–1411 (1996).

    CAS  PubMed  Google Scholar 

  44. Dalton, D.K. et al. Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science 259, 1739–1742 (1993).

    CAS  PubMed  Google Scholar 

  45. Hou, B., Reizis, B. & DeFranco, A.L. Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms. Immunity 29, 272–282 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wijsman, J.H. et al. A new method to detect apoptosis in paraffin sections: in situ end-labeling of fragmented DNA. J. Histochem. Cytochem. 41, 7–12 (1993).

    CAS  PubMed  Google Scholar 

  47. Bonnard, M. et al. Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-κB-dependent gene transcription. EMBO J. 19, 4976–4985 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Calzascia, T. et al. TNF-α is critical for antitumor but not antiviral T cell immunity in mice. J. Clin. Invest. 117, 3833–3845 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Esashi, E. et al. The signal transducer STAT5 inhibits plasmacytoid dendritic cell development by suppressing transcription factor IRF8. Immunity 28, 509–520 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pellegrini, M. et al. Adjuvant IL-7 antagonizes multiple cellular and molecular inhibitory networks to enhance immunotherapies. Nat Med 15, 528–536 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Haight for animal care; A. Elia, L. Zhou and K. So and M. Macasaet for assistance with histopathology; R. Nayyar and F. Tong for flow cytometry support; M. Herold for assistance with the transduction of retroviruses, lentiviruses and short hairpin RNA; and T. Calzascia, C. Deluca, Y.J. Yang, A. Cheung, J. Woodgett, V. Stambolic and M. Minden for discussions. Supported by the Terry Fox Cancer Foundation (T.W.M. and P.S.O.), the National Cancer Institute of Canada (T.W.M. and P.S.O.), Canada Research Chairs (P.S.O.), the Cancer Research Institute (M.P.), National Health and Medical Research Council Australia (Career Development Award 637350 to M.P.), Victorian State Government Operational Infrastructure Support (M.P.), the Independent Research Institutes Infrastructure Support Scheme of the Australian Government National Health and Medical Research Council (M.P.) and the Canadian Institutes of Health Research (A.E.L.).

Author information

Authors and Affiliations

Authors

Contributions

A.E.L., M.P., G.E., Y.O., M.S., P.S.O. and T.W.M. designed and did all of the research with assistance from S.P.P., J.G.T., J.P.C., H.W.S., S.D.S., D.D. and R.H.K. and technical assistance from A.W., A.S., G.D., A.Y.-T., and J.S.; A.E.L. wrote the manuscript; and T.W.M. and M.P. directed the project and contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Tak W Mak or Marc Pellegrini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Tables 1–5 (PDF 485 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, A., Ebert, G., Ow, Y. et al. ARIH2 is essential for embryogenesis, and its hematopoietic deficiency causes lethal activation of the immune system. Nat Immunol 14, 27–33 (2013). https://doi.org/10.1038/ni.2478

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2478

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing