Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens

Abstract

T cells autoreactive to the antigen-presenting molecule CD1a are common in human blood and skin, but the search for natural autoantigens has been confounded by background T cell responses to CD1 proteins and self lipids. After capturing CD1a-lipid complexes, we gently eluted ligands while preserving non–ligand-bound CD1a for testing lipids from tissues. CD1a released hundreds of ligands of two types. Inhibitory ligands were ubiquitous membrane lipids with polar head groups, whereas stimulatory compounds were apolar oils. We identified squalene and wax esters, which naturally accumulate in epidermis and sebum, as autoantigens presented by CD1a. The activation of T cells by skin oils suggested that headless mini-antigens nest within CD1a and displace non-antigenic resident lipids with large head groups. Oily autoantigens naturally coat the surface of the skin; thus, this points to a previously unknown mechanism of barrier immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD1a-dependent activation of T cell lines.
Figure 2: Activation of CD1a-autoreactive T cell lines by recombinant CD1a.
Figure 3: Lipid composition of eluates from CD1a.
Figure 4: Nonpolar lipid extracts activate aCD1a-autoreactive T cell line.
Figure 5: Human epidermis contains multiple lipid antigens.
Figure 6: Human sebaceous glands contain headless CD1a lipid antigens.
Figure 7: Hydrophilic head groups block recognition of antigen presented by CD1a.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Porcelli, S. et al. Recognition of cluster of differentiation 1 antigens by human CD4–CD8-cytolytic T lymphocytes. Nature 341, 447–450 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. de Jong, A. et al. CD1a-autoreactive T cells are a normal component of the human αβ T cell repertoire. Nat. Immunol. 11, 1102–1109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. de Lalla, C. et al. High-frequency and adaptive-like dynamics of human CD1 self-reactive T cells. Eur. J. Immunol. 41, 602–610 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Roura-Mir, C. et al. CD1a and CD1c activate intrathyroidal T cells during Graves' disease and Hashimoto's thyroiditis. J. Immunol. 174, 3773–3780 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Colonna, M. Skin function for human CD1a-reactive T cells. Nat. Immunol. 11, 1079–1080 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Shamshiev, A. et al. Self glycolipids as T-cell autoantigens. Eur. J. Immunol. 29, 1667–1675 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Fox, L.M. et al. Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLoS Biol. 7, e1000228 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Brennan, P.J. et al. Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nat. Immunol. 12, 1202–1211 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Van Rhijn, I. et al. CD1d-restricted T cell activation by nonlipidic small molecules. Proc. Natl. Acad. Sci. USA 101, 13578–13583 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garboczi, D.N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134–141 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Garcia, K.C. et al. An αβ T cell receptor structure at 2.5 Å and its orientation in the TCR-MHC complex. Science 274, 209–219 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Borg, N.A. et al. CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448, 44–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Altman, J.D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Kasmar, A.G. et al. CD1b tetramers bind αβ T cell receptors to identify a mycobacterial glycolipid-reactive T cell repertoire in humans. J. Exp. Med. 208, 1741–1747 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Porcelli, S.A. The CD1 family: a third lineage of antigen-presenting molecules. Adv. Immunol. 59, 1–98 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Zajonc, D.M. et al. Molecular mechanism of lipopeptide presentation by CD1a. Immunity 22, 209–219 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Moody, D.B. et al. T cell activation by lipopeptide antigens. Science 303, 527–531 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Ernst, W.A. et al. Molecular interaction of CD1b with lipoglycan antigens. Immunity 8, 331–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Deng, L. & Mariuzza, R.A. Recognition of self-peptide-MHC complexes by autoimmune T-cell receptors. Trends Biochem. Sci. 32, 500–508 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cox, D. et al. Determination of cellular lipids bound to human CD1d molecules. PLoS ONE 4, e5325 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yuan, W., Kang, S.J., Evans, J.E. & Cresswell, P. Natural lipid ligands associated with human CD1d targeted to different subcellular compartments. J. Immunol. 182, 4784–4791 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Haig, N.A. et al. Identification of self-lipids presented by CD1c and CD1d proteins. J. Biol. Chem. 286, 37692–37701 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang, S. et al. Discovery of deoxyceramides and diacylglycerols as CD1b scaffold lipids among diverse groove-blocking lipids of the human CD1 system. Proc. Natl. Acad. Sci. USA 108, 19335–19340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sugita, M. et al. Separate pathways for antigen presentation by CD1 molecules. Immunity 11, 743–752 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Barral, D.C. et al. CD1a and MHC class I follow a similar endocytic recycling pathway. Traffic 9, 1446–1457 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Layre, E. et al. A comparative lipidomics platform for chemotaxonomic analysis of Mycobacterium tuberculosis. Chem. Biol. 18, 1537–1549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Murphy, G.F., Bhan, A.K., Sato, S., Mihm, M.C. Jr. & Harrist, T.J. A new immunologic marker for human Langerhans cells. N. Engl. J. Med. 304, 791–792 (1981).

    CAS  PubMed  Google Scholar 

  30. Crozat, K. et al. Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunol. Rev. 234, 177–198 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Nicolaides, N. Skin lipids: their biochemical uniqueness. Science 186, 19–26 (1974).

    Article  CAS  PubMed  Google Scholar 

  32. Touchstone, J.C. Thin-layer chromatographic procedures for lipid separation. J. Chromatogr. B Biomed. Appl. 671, 169–195 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Moody, D.B. et al. Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science 278, 283–286 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. de Jong, A. et al. CD1c presentation of synthetic glycolipid antigens with foreign alkyl branching motifs. Chem. Biol. 14, 1232–1242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lampe, M.A. et al. Human stratum corneum lipids: characterization and regional variations. J. Lipid Res. 24, 120–130 (1983).

    Article  CAS  PubMed  Google Scholar 

  36. Kellum, R.E. Human sebaceous gland lipids. Analysis by thin-layer chromatography. Arch. Dermatol. 95, 218–220 (1967).

    Article  CAS  PubMed  Google Scholar 

  37. Zajonc, D.M., Elsliger, M.A., Teyton, L. & Wilson, I.A. Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 Å. Nat. Immunol. 4, 808–815 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Manolova, V. et al. Functional CD1a is stabilized by exogenous lipids. Eur. J. Immunol. 36, 1083–1092 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Mallevaey, T. et al. A molecular basis for NKT cell recognition of CD1d-self-antigen. Immunity 34, 315–326 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rossjohn, J., Pellicci, D.G., Patel, O., Gapin, L. & Godfrey, D.I. Recognition of CD1d-restricted antigens by natural killer T cells. Nat. Rev. Immunol. 12, 845–857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Garcia-Alles, L.F. et al. Endogenous phosphatidylcholine and a long spacer ligand stabilize the lipid-binding groove of CD1b. EMBO J. 25, 3684–3692 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dieudé, M. et al. Cardiolipin binds to CD1d and stimulates CD1d-restricted gammadelta T cells in the normal murine repertoire. J. Immunol. 186, 4771–4781 (2011).

    Article  PubMed  CAS  Google Scholar 

  43. McCarthy, C. et al. The length of lipids bound to human CD1d molecules modulates the affinity of NKT cell TCR and the threshold of NKT cell activation. J. Exp. Med. 204, 1131–1144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Di Nardo, A., Wertz, P., Giannetti, A. & Seidenari, S. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm. Venereol. 78, 27–30 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Motta, S. et al. Ceramide composition of the psoriatic scale. Biochim. Biophys. Acta 1182, 147–151 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Kircik, L.H., Del Rosso, J.Q. & Aversa, D. Evaluating clinical use of a ceramide-dominant, physiologic lipid-based topical emulsion for atopic dermatitis. J. Clin. Aesthetic Dermatol. 4, 34–40 (2011).

    Google Scholar 

  47. O'Hagan, D.T., Ott, G.S., De Gregorio, E. & Seubert, A. The mechanism of action of MF59–an innately attractive adjuvant formulation. Vaccine 30, 4341–4348 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Peña-Cruz, V. et al. Extraction of human Langerhans cells: a method for isolation of epidermis-resident dendritic cells. J. Immunol. Methods 255, 83–91 (2001).

    Article  PubMed  Google Scholar 

  49. Tachi, M. & Iwamori, M. Mass spectrometric characterization of cholesterol esters and wax esters in epidermis of fetal, adult and keloidal human skin. Exp. Dermatol. 17, 318–323 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Gras, S. et al. The shaping of T cell receptor recognition by self-tolerance. Immunity 30, 193–203 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Higgins (Columbia University) for the photo of sebaceous glands; L.L. Tan for technical support for production of the BC2 TCR; and members of the US National Institutes of Health Tetramer Facility for the preparation of CD1a. Supported by the Burroughs Wellcome Fund (D.B.M.), the Mizutani Foundation, the US National Institutes of Health (AR R01048632 and AI 049313 to D.B.M.; K08AI089858 to A.G.K.; Tetramer Facility contract HHSN272201300006C to J.D.A.), the Dermatology Foundation (A.d.J.), the American Skin Association (A.d.J.), the Australian Research Council (S.G.) and the National Health and Medical Research Council of Australia (J.R.).

Author information

Authors and Affiliations

Authors

Contributions

A.d.J. and D.B.M. designed research and wrote the manuscript; A.d.J. and T.-Y.C. designed and performed experiments. A.G.K. did CD1a-precipitation assays and contributed to cell-free assays. S.H. did acid stripping and reloading of CD1 eluents for T cell activation, elution and quadrupole time-of-flight mass spectrometry of CD1a ligands; V.P.-C. provided epidermal sheets for lipid extraction; D.T.R. provided thyroid tissue samples; J.D.A. provided biotinylated CD1a monomers; I.V.R. identified alleles encoding TCR α- and β-chains; S.G., R.W.B. and J.R. designed experiments and contributed surface plasmon resonance data; and J.R. assisted in preparation of the manuscript.

Corresponding authors

Correspondence to Annemieke de Jong or D Branch Moody.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Low pH promotes unloading of lipids from CD1a protein.

Plate-bound CD1a protein was treated with citrate buffers of indicated pH. 24h after co-incubation of BC2 T cell line with pH-treated CD1a protein, T cell activation was measured in the supernatant by IFNγ ELISA

Supplementary Figure 2 Identification of lipids eluted from recombinant CD1a proteins by collision-induced dissociation mass spectrometry and comparison with lipid standards (positive mode analysis).

Supplementary Figure 3 Identification of lipids eluted from recombinant CD1a proteins by collision-induced dissociation mass spectrometry and comparison with lipid standards (negative mode analysis).

Supplementary Figure 4 Electrospray-ionization mass spectrometry of lipids eluted from silica fraction of a TLC plate.

Comparison of collision induced dissociation mass spectrometry profiles with lipid standards

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Table 1 (PDF 4720 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Jong, A., Cheng, TY., Huang, S. et al. CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. Nat Immunol 15, 177–185 (2014). https://doi.org/10.1038/ni.2790

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2790

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing