Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Parallels and differences between innate and adaptive lymphocytes

Abstract

Lymphocytes are essential in innate and adaptive immunity. Recent insights suggest that some innate lymphocytes execute functions with adaptive characteristics, while adaptive lymphocytes can operate in ways reminiscent of innate cells. Rather than partitioning lymphocytes according to the type of effector function they execute, we propose that a relevant discrimination relates to the existence of conventional T cells in a naive state. The naive state can be seen as an actively repressed condition that supports T cell diversity and enables the flexible differentiation of effector cells in a manner that best addresses the antigenic challenge. We discuss these considerations in the context of the relative roles of innate lymphoid cells and antigen-experienced T cells in the immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conventional T cells and innate and innate-like lymphocytes differentially acquire the ability to execute overlapping sets of effector functions.

Similar content being viewed by others

References

  1. Diefenbach, A., Colonna, M. & Koyasu, S. Development, differentiation, and diversity of innate lymphoid cells. Immunity 41, 354–365 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Godfrey, D.I., Uldrich, A.P., McCluskey, J., Rossjohn, J. & Moody, D.B. The burgeoning family of unconventional T cells. Nat. Immunol. 16, 1114–1123 (2015).

    CAS  PubMed  Google Scholar 

  3. Lee, Y.J., Jameson, S.C. & Hogquist, K.A. Alternative memory in the CD8 T cell lineage. Trends Immunol. 32, 50–56 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Berg, R.E., Crossley, E., Murray, S. & Forman, J. Memory CD8+ T cells provide innate immune protection against Listeria monocytogenes in the absence of cognate antigen. J. Exp. Med. 198, 1583–1593 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kastenmüller, W., Torabi-Parizi, P., Subramanian, N., Lämmermann, T. & Germain, R.N. A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread. Cell 150, 1235–1248 (2012).

    PubMed  PubMed Central  Google Scholar 

  6. Kupz, A. et al. NLRC4 inflammasomes in dendritic cells regulate noncognate effector function by memory CD8+ T cells. Nat. Immunol. 13, 162–169 (2012).

    CAS  PubMed  Google Scholar 

  7. Soudja, S.M., Ruiz, A.L., Marie, J.C. & Lauvau, G. Inflammatory monocytes activate memory CD8+ T and innate NK lymphocytes independent of cognate antigen during microbial pathogen invasion. Immunity 37, 549–562 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sutton, C.E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341 (2009).

    CAS  PubMed  Google Scholar 

  9. Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38, 769–781 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gasteiger, G., Fan, X., Dikiy, S., Lee, S.Y. & Rudensky, A.Y. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350, 981–985 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).

    CAS  PubMed  Google Scholar 

  12. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jameson, J.M., Cauvi, G., Witherden, D.A. & Havran, W.L. A keratinocyte-responsive γδ TCR is necessary for dendritic epidermal T cell activation by damaged keratinocytes and maintenance in the epidermis. J. Immunol. 172, 3573–3579 (2004).

    CAS  PubMed  Google Scholar 

  14. Eickhoff, S. et al. Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions. Cell 162, 1322–1337 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kastenmüller, W. et al. Peripheral prepositioning and local CXCL9 chemokine-mediated guidance orchestrate rapid memory CD8+ T cell responses in the lymph node. Immunity 38, 502–513 (2013).

    PubMed  PubMed Central  Google Scholar 

  16. Dadi, S. et al. Cancer immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. Cell 164, 365–377 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chien, Y.H., Meyer, C. & Bonneville, M. γδ T cells: first line of defense and beyond. Annu. Rev. Immunol. 32, 121–155 (2014).

    CAS  PubMed  Google Scholar 

  18. Sun, J.C., Beilke, J.N. & Lanier, L.L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lopez-Vergès, S. et al. Expansion of a unique CD57+NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc. Natl. Acad. Sci. USA 108, 14725–14732 (2011).

    PubMed  PubMed Central  Google Scholar 

  20. Schlums, H. et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 42, 443–456 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Björkström, N.K. et al. Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J. Exp. Med. 208, 13–21 (2011).

    PubMed  PubMed Central  Google Scholar 

  22. Jameson, S.C., Lee, Y.J. & Hogquist, K.A. Innate memory T cells. Adv. Immunol. 126, 173–213 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Paust, S. & von Andrian, U.H. Natural killer cell memory. Nat. Immunol. 12, 500–508 (2011).

    CAS  PubMed  Google Scholar 

  24. Reeves, R.K. et al. Antigen-specific NK cell memory in rhesus macaques. Nat. Immunol. 16, 927–932 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cooper, M.A. et al. Cytokine-induced memory-like natural killer cells. Proc. Natl. Acad. Sci. USA 106, 1915–1919 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Neill, D.R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang, Y.J. et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat. Immunol. 12, 631–638 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun, J.C., Ugolini, S. & Vivier, E. Immunological memory within the innate immune system. EMBO J. 33, 1295–1303 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Quintin, J., Cheng, S.C., van der Meer, J.W. & Netea, M.G. Innate immune memory: towards a better understanding of host defense mechanisms. Curr. Opin. Immunol. 29, 1–7 (2014).

    CAS  PubMed  Google Scholar 

  30. Shimizu, K. et al. KLRG+ invariant natural killer T cells are long-lived effectors. Proc. Natl. Acad. Sci. USA 111, 12474–12479 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sheridan, B.S. et al. γδ T cells exhibit multifunctional and protective memory in intestinal tissues. Immunity 39, 184–195 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Min-Oo, G. & Lanier, L.L. Cytomegalovirus generates long-lived antigen-specific NK cells with diminished bystander activation to heterologous infection. J. Exp. Med. 211, 2669–2680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Richer, M.J., Nolz, J.C. & Harty, J.T. Pathogen-specific inflammatory milieux tune the antigen sensitivity of CD8+ T cells by enhancing T cell receptor signaling. Immunity 38, 140–152 (2013).

    CAS  PubMed  Google Scholar 

  34. Bezbradica, J.S., Rosenstein, R.K., DeMarco, R.A., Brodsky, I. & Medzhitov, R. A role for the ITAM signaling module in specifying cytokine-receptor functions. Nat. Immunol. 15, 333–342 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sprent, J. & Surh, C.D. Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat. Immunol. 12, 478–484 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. De Obaldia, M.E. & Bhandoola, A. Transcriptional regulation of innate and adaptive lymphocyte lineages. Annu. Rev. Immunol. 33, 607–642 (2015).

    CAS  PubMed  Google Scholar 

  37. Wan, Y.Y., Chi, H., Xie, M., Schneider, M.D. & Flavell, R.A. The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function. Nat. Immunol. 7, 851–858 (2006).

    CAS  PubMed  Google Scholar 

  38. Hogquist, K.A., Xing, Y., Hsu, F.C. & Shapiro, V.S. T cell adolescence: maturation events beyond positive selection. J. Immunol. 195, 1351–1357 (2015).

    CAS  PubMed  Google Scholar 

  39. Russ, B.E. et al. Distinct epigenetic signatures delineate transcriptional programs during virus-specific CD8+ T cell differentiation. Immunity 41, 853–865 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gugasyan, R. et al. The NF-κB1 transcription factor prevents the intrathymic development of CD8 T cells with memory properties. EMBO J. 31, 692–706 (2012).

    CAS  PubMed  Google Scholar 

  41. Raberger, J. et al. The transcriptional regulator PLZF induces the development of CD44 high memory phenotype T cells. Proc. Natl. Acad. Sci. USA 105, 17919–17924 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kovalovsky, D. et al. The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol. 9, 1055–1064 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Weinreich, M.A., Odumade, O.A., Jameson, S.C. & Hogquist, K.A. T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nat. Immunol. 11, 709–716 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chiossone, L. et al. Maturation of mouse NK cells is a 4-stage developmental program. Blood 113, 5488–5496 (2009).

    CAS  PubMed  Google Scholar 

  45. Lucas, M., Schachterle, W., Oberle, K., Aichele, P. & Diefenbach, A. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26, 503–517 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fehniger, T.A. et al. Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity 26, 798–811 (2007).

    CAS  PubMed  Google Scholar 

  47. Huang, Y. et al. IL-25-responsive, lineage-negative KLRG1hi cells are multipotential 'inflammatory' type 2 innate lymphoid cells. Nat. Immunol. 16, 161–169 (2015).

    CAS  PubMed  Google Scholar 

  48. Buchholz, V.R. et al. Disparate individual fates compose robust CD8+ T cell immunity. Science 340, 630–635 (2013).

    CAS  PubMed  Google Scholar 

  49. Rankin, L.C. et al. Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nat. Immunol. 17, 179–186 (2016).

    CAS  PubMed  Google Scholar 

  50. Guo, L. et al. Innate immunological function of TH2 cells in vivo. Nat. Immunol. 16, 1051–1059 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343, 1249288 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Brooks, N. La Gruta, B. Russ, S. Turner, D. Godfrey, D. Gray and N. Garbi for input and discussions. Supported by the National Health and Medical Research Council of Australia, the Sylvia and Charles Viertel Charitable Foundation, the German Research Council graduate program (2168/1 ('Bo&MeRang'), for S.B., T.G. and W.K.; the Emmy Noether program, for G.G.; and the Excellence Cluster ImmunoSensation in Bonn, Germany, for W.K.) and NRW-Rückkehrerprogramm of the German state of Northrhine-Westfalia (W.K.).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedoui, S., Gebhardt, T., Gasteiger, G. et al. Parallels and differences between innate and adaptive lymphocytes. Nat Immunol 17, 490–494 (2016). https://doi.org/10.1038/ni.3432

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3432

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing