Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suppressor of cytokine signaling 1 regulates the immune response to infection by a unique inhibition of type I interferon activity

Abstract

Suppressor of cytokine signaling 1 (SOCS1) is a critical regulator of cytokine signaling and immune responses. SOCS1-deficient mice develop severe inflammatory disease, but are very resistant to viral infections. Using neutralizing antibody to type I interferon (IFN-α and IFN-β) and mice deficient in interferon-γ or type I interferon receptor components (IFNAR1 or IFNAR2), we demonstrate here that SOCS1 deficiency amplified type I interferon antiviral and proinflammatory actions independently of interferon-γ. The mechanism of the suppression of type I interferon responses by SOCS1 was distinct from that of other cytokines. SOCS1 associated with and regulated IFNAR1- but not IFNAR2-specific signals, abrogating tyrosine phosphorylation of transcription factor STAT1 and reducing the duration of antiviral gene expression. Thus, SOCS1 is an important in vivo inhibitor of type I interferon signaling and contributes to balancing its beneficial antiviral versus detrimental proinflammatory effects on innate immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Viral replication and interferon secretion from SFV-infected neonatal mice with targeted mutation of Socs1.
Figure 2: IFN-γ responses do not affect the 'hyper-resistance' of Socs1−/− mice to viral infection.
Figure 3: Type I interferon mediates resistance to SFV in Socs1−/−Ifng−/− mice.
Figure 4: Mechanism of SOCS1 suppression of type I interferon antiviral signaling.
Figure 5: IFNAR1 and SOCS1 show a direct interaction.

Similar content being viewed by others

References

  1. Gutterman, J.U. Cytokine therapeutics: lessons from interferon-α. Proc. Natl. Acad. Sci. USA 91, 1198–1205 (1994).

    Article  CAS  Google Scholar 

  2. Issac, A. & Lindemann, J. Virus interference I: the interferons. Proc. Royal Soc. Lond. B 147, 258–267 (1957).

    Article  Google Scholar 

  3. Pestka, S., Langer, J.A., Zoon, K.C. & Samuel, C.E. Interferons and their actions. Annu. Rev. Biochem. 56, 727–777 (1987).

    Article  CAS  Google Scholar 

  4. Hertzog, P.J. et al. A gene on human chromosome 21 located in the region 21q22.2 to 22q22.3 encodes a factor necessary for signal transduction and antiviral response to type I interferons. J. Biol. Chem. 269, 14088–14093 (1994).

    CAS  PubMed  Google Scholar 

  5. Weissmann, C. & Weber, H. The interferon genes. Prog. Nucleic Acid Res. Mol. Biol. 33, 251–300 (1986).

    Article  CAS  Google Scholar 

  6. Oritani, K., Kincade, P.W., Zhang, C., Tomiyama, Y. & Matsuzuma, Y. Type I interferons and limitin: a comparison of structures, receptors and functions. Cytokine Growth Factor Rev. 12, 337–348 (2001).

    Article  CAS  Google Scholar 

  7. Le Bon, A. et al. Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14, 461–470 (2001).

    Article  CAS  Google Scholar 

  8. Bach, E.A., Aguet, M. & Schreiber, R.D. The IFN-γ receptor: a paradigm for cytokine receptor signaling. Annu. Rev. Immunol. 15, 563–591 (1997).

    Article  CAS  Google Scholar 

  9. Godfrey, D.I., Hammond, K.J., Poulton, L.D., Smythe, M.J. & Baxter, A.G. NKT cells: facts, functions and fallacies. Immunol. Today 21, 573–583 (2000).

    Article  CAS  Google Scholar 

  10. Darnell, J.E., Kerr, I.M. & Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421 (1994).

    Article  CAS  Google Scholar 

  11. Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H. & Schreiber, R.D. How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264 (1998).

    Article  CAS  Google Scholar 

  12. Gresser, I. How does interferon inhibit tumour growth? Phil. Trans. R. Soc. Lond. B 299, 69–76 (1982).

    Article  CAS  Google Scholar 

  13. Neel, B.G. Role of phosphatases in lymphocyte activation. Curr. Opin. Immunol. 9, 405–420 (1997).

    Article  CAS  Google Scholar 

  14. Irie-Sasaki, J. et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signaling. Nature 409, 349–354 (2001).

    Article  CAS  Google Scholar 

  15. Starr, R. et al. A family of cytokine-inducible inhibitors of signaling. Nature 387, 917–921 (1997).

    Article  CAS  Google Scholar 

  16. Endo, T.A. et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387, 921–924 (1997).

    Article  CAS  Google Scholar 

  17. Naka, T. et al. Structure and function of a new STAT-induced STAT inhibitor. Nature 387, 924–929 (1997).

    Article  CAS  Google Scholar 

  18. Yoshimura, A. et al. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin-3 and erythropoietin receptors. EMBO J. 14, 2816–2826 (1995).

    Article  CAS  Google Scholar 

  19. Hilton, D.J. et al. Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc. Natl. Acad. Sci. USA 95, 114–119 (1998).

    Article  CAS  Google Scholar 

  20. Nicholson, S.E. et al. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J. 18, 375–385 (1999).

    Article  CAS  Google Scholar 

  21. Sasaki, A. et al. Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells 4, 339–351 (1999).

    Article  CAS  Google Scholar 

  22. Zhang, J.-G. et al. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc. Natl. Acad. Sci. USA 96, 2071–2076 (1999).

    Article  CAS  Google Scholar 

  23. Nicholson, S.E. et al. Suppressor of cytokine signaling-3 preferentially binds to the SHP-2-binding site on the shared cytokine receptor subunit gp130. Proc. Natl. Acad. Sci. USA 97, 6493–6498 (2000).

    Article  CAS  Google Scholar 

  24. Yasukawa, H. et al. The JAK binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J. 18, 1309–1320 (1999).

    Article  CAS  Google Scholar 

  25. Kile, B.T. et al. The SOCS box: a tale of destruction and degradation. Trends Biochem. Sci. 27, 235–241 (2002).

    Article  CAS  Google Scholar 

  26. Adams, T.E. et al. Growth hormone preferentially induces the rapid, transient expression of SOCS3, a novel inhibitor of cytokine signaling. J. Biol. Chem. 273, 1285–1287 (1998).

    Article  CAS  Google Scholar 

  27. Sakamoto, H. et al. A Janus kinase inhibitor, JAB, is an interferon-γ inducible gene and confers resistance to interferons. Blood 92, 1668–1676 (1998).

    CAS  PubMed  Google Scholar 

  28. Bjorbaek, C., Elmquist, J.K., Frantz, J.D., Shoelson, S.E. & Flier, J.S. Identification of SOCS3 as a potential mediator of central leptin resistance. Mol. Cell 1, 619–625 (1998).

    Article  CAS  Google Scholar 

  29. Starr, R. et al. Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proc. Natl. Acad. Sci. USA 95, 14395–14399 (1998).

    Article  CAS  Google Scholar 

  30. Naka, T. et al. Accelerated apoptosis of lymphocytes by augmented induction of Bax in SSI-1 (STAT-induced STAT inhibitor-1) deficient mice. Proc. Natl. Acad. Sci. USA 95, 15577–15582 (1998).

    Article  CAS  Google Scholar 

  31. Alexander, W.S. et al. SOCS 1 is a critical inhibitor of interferon γ signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell 98, 1–20 (1999).

    Article  Google Scholar 

  32. Marine, J.C. et al. SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell 98, 609–616 (1999).

    Article  CAS  Google Scholar 

  33. Brysha, M. et al. Suppressor of cytokine signaling 1 attenuates the duration of interferon gamma signal transduction in vitro and in vivo. J. Biol. Chem. 276, 22086–22089 (2001).

    Article  CAS  Google Scholar 

  34. Hertzog, P.J., Emery, P., Cheetham, B.F., Mackay, I.R. & Linnane, A.W. Interferons in rheumatoid arthritis: Alterations in production and response related to disease activity. Clin. Immunol. Immunopathol. 48, 192–201 (1988).

    Article  CAS  Google Scholar 

  35. Song, M.M. & Shuai, K. The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J. Biol. Chem. 273, 35056–35062 (1998).

    Article  CAS  Google Scholar 

  36. Kubo, M., Hanada, T. & Yoshimura, A. Suppressors of cytokine signaling and immunity. Nat. Immunol. 4, 1169–1176 (2003).

    Article  CAS  Google Scholar 

  37. Bullen, D.V., Darwiche, R., Metcalf, D., Handman, E. & Alexander, W.S. Neutralisation of interferon-γ in neonatal Socs1−/− mice prevents fatty degeneration of the liver but not subsequent fatal inflammatory disease. Immunology 104, 92–98 (2001).

    Article  CAS  Google Scholar 

  38. Metcalf, D., Mifsud, S., Di Rago, L. & Alexander, W.S. The lethal effects of transplantation of Socs1−/− bone marrow cells into irradiated adult syngeneic recipients. Proc. Natl. Acad. Sci. USA 100, 8436–8441 (2003).

    Article  CAS  Google Scholar 

  39. Dalton, D.K. et al. Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science 259, 1739–1742 (1993).

    Article  CAS  Google Scholar 

  40. Biron, C.A. Cytokines in the generation of immune responses to, and resolution of, virus infection. Curr. Opin. Immunol. 6, 530–538 (1994).

    Article  CAS  Google Scholar 

  41. Müller, U. et al. Functional role of type I and type II interferons in antiviral defense. Science 264, 1918–1921 (1994).

    Article  Google Scholar 

  42. Hwang, S.Y. et al. A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons α and β and alters macrophage responses. Proc. Natl. Acad. Sci. USA 92, 11284–11288 (1995).

    Article  CAS  Google Scholar 

  43. Eyles, J.L., Metcalf, D., Grusby, M.J., Hilton, D.J. & Starr, R. Negative regulation of interleukin-12 signaling by suppressor of cytokine signaling 1. J. Biol. Chem. 277, 43735–43740 (2002).

    Article  CAS  Google Scholar 

  44. Hamilton, J.A., Whitty, G.A., Kola, I. & Hertzog, P.J. Endogenous IFNα/β suppresses colony-stimulating factor (CSF)-1-stimulated macrophage DNA synthesis and mediates inhibitory effects of lipopolysaccharide and TNFα. J. Immunol. 156, 2553–2557 (1996).

    CAS  PubMed  Google Scholar 

  45. Hertzog, P.J., O'Neill, L.A. & Hamilton, J.A. The interferon in TLR signaling: more than just antiviral. Trends Immunol. 24, 534–539 (2003).

    Article  CAS  Google Scholar 

  46. Takaoka, A. et al. Cross talk between interferon-γ and –α/β signaling components in caveolar membrane domains. Science 288, 2357–2360 (2000).

    Article  CAS  Google Scholar 

  47. Cornish, A.L. et al. Suppressor of cytokine signaling-1 regulates signaling in response to interleukin-2 and other γc-dependent cytokines in peripheral T cells. J. Biol. Chem. 278, 22755–22761 (2003).

    Article  CAS  Google Scholar 

  48. Chong, M.M. et al. Suppressor of cytokine signaling-1 is a critical regulator of interleukin-7-dependant CD8+ T cell differentiation. Immunity 18, 475–487 (2003).

    Article  CAS  Google Scholar 

  49. Sweet, M.J. et al. A novel pathway regulating lipopolysaccharide-Induced shock by ST2/T1 via inhibition of Toll-like receptor 4 expression. J. Immunol. 166, 6633–6639 (2001).

    Article  CAS  Google Scholar 

  50. Hertzog, P.J. Isolation of embryonic fibroblasts and their use in the in vitro characterization of gene function. Methods Mol. Biol. 158, 205–215 (2001).

    CAS  PubMed  Google Scholar 

  51. Dunn, G.P. et al. A critical function for type I interferons in cancer immunoediting. Nat. Immunol. 6, 722–729 (2005).

    Article  CAS  Google Scholar 

  52. Wilson-Annon, J. et al. Proapoptotic BH3-only proteins trigger membrane integration of prosurvival Bcl-w and neutralize its activity. J. Cell. Biol. 162, 877–887 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

Supported by the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J Hertzog.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenner, J., Starr, R., Cornish, A. et al. Suppressor of cytokine signaling 1 regulates the immune response to infection by a unique inhibition of type I interferon activity. Nat Immunol 7, 33–39 (2006). https://doi.org/10.1038/ni1287

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing