Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance

Abstract

T cell homeostasis is crucial for a functional immune system, as the accumulation of T cells resulting from lack of regulatory T cells or an inability to shut down immune responses can lead to inflammation and autoimmune pathology. Here we show that Blimp-1, a transcriptional repressor that is a 'master regulator' of terminal B cell differentiation, was expressed in a subset of antigen-experienced CD4+ and CD8+ T cells. Mice reconstituted with fetal liver stem cells expressing a mutant Blimp-1 lacking the DNA-binding domain developed a lethal multiorgan inflammatory disease caused by an accumulation of effector and memory T cells. These data identify Blimp-1 as an essential regulator of T cell homeostasis and suggest that Blimp-1 regulates both B cell and T cell differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Blimp-1-deficient mice develop a lethal lymphocyte hyperproliferative syndrome.
Figure 2: Blimp-1 is expressed in and controls the number of effector and memory CD4+ T cells.
Figure 3: Blimp-1 is expressed in and controls the number of effector and memory CD8+ T cells.
Figure 4: Blimp-1 intrinsically regulates the homeostatic population expansion of T cells.
Figure 5: Blimp-1 is dispensable for Treg cell function.
Figure 6: Blimp-1 expression in vitro.
Figure 7: Blimp-1 regulates T cell numbers in vitro.
Figure 8: Blimp-1-mutant T cells are less susceptible than wild-type cells to apoptosis.

Similar content being viewed by others

References

  1. Chambers, C.A., Sullivan, T.J. & Allison, J.P. Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 7, 885–895 (1997).

    Article  CAS  Google Scholar 

  2. Gorelik, L. & Flavell, R.A. Transforming growth factor-β in T-cell biology. Nat. Rev. Immunol. 2, 46–53 (2002).

    Article  CAS  Google Scholar 

  3. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    Article  CAS  Google Scholar 

  4. Nagata, S. Fas ligand-induced apoptosis. Annu. Rev. Genet. 33, 29–55 (1999).

    Article  CAS  Google Scholar 

  5. Lohr, J., Knoechel, B., Nagabhushanam, V. & Abbas, A.K. T-cell tolerance and autoimmunity to systemic and tissue-restricted self-antigens. Immunol. Rev. 204, 116–127 (2005).

    Article  CAS  Google Scholar 

  6. Fontenot, J.D. & Rudensky, A.Y. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat. Immunol. 6, 331–337 (2005).

    Article  CAS  Google Scholar 

  7. Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6, 345–352 (2005).

    Article  CAS  Google Scholar 

  8. D'Cruz, L.M. & Klein, L. Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat. Immunol. 6, 1152–1159 (2005).

    Article  CAS  Google Scholar 

  9. Fontenot, J.D., Rasmussen, J.P., Gavin, M.A. & Rudensky, A.Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).

    Article  CAS  Google Scholar 

  10. Schluns, K.S. & Lefrancois, L. Cytokine control of memory T-cell development and survival. Nat. Rev. Immunol. 3, 269–279 (2003).

    Article  CAS  Google Scholar 

  11. Kuo, C.T., Veselits, M.L. & Leiden, J.M. LKLF: A transcriptional regulator of single-positive T cell quiescence and survival. Science 277, 1986–1990 (1997).

    Article  CAS  Google Scholar 

  12. Lin, L., Hron, J.D. & Peng, S.L. Regulation of NF-κB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a. Immunity 21, 203–213 (2004).

    Article  CAS  Google Scholar 

  13. Szabo, S.J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  Google Scholar 

  14. Zhu, J. et al. Conditional deletion of Gata3 shows its essential function in TH1-TH2 responses. Nat. Immunol. 5, 1157–1165 (2004).

    Article  CAS  Google Scholar 

  15. Intlekofer, A.M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 6, 1236–1244 (2005).

    Article  CAS  Google Scholar 

  16. Ichii, H. et al. Role for Bcl-6 in the generation and maintenance of memory CD8+ T cells. Nat. Immunol. 3, 558–563 (2002).

    Article  CAS  Google Scholar 

  17. Shapiro-Shelef, M. & Calame, K. Regulation of plasma-cell development. Nat. Rev. Immunol. 5, 230–242 (2005).

    Article  CAS  Google Scholar 

  18. Kallies, A. et al. Plasma cell ontogeny defined by quantitative changes in blimp-1 expression. J. Exp. Med. 200, 967–977 (2004).

    Article  CAS  Google Scholar 

  19. Shapiro-Shelef, M. et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19, 607–620 (2003).

    Article  CAS  Google Scholar 

  20. Lin, Y., Wong, K. & Calame, K. Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science 276, 596–599 (1997).

    Article  CAS  Google Scholar 

  21. Chang, D.H., Angelin-Duclos, C. & Calame, K. BLIMP-1: trigger for differentiation of myeloid lineage. Nat. Immunol. 1, 169–176 (2000).

    Article  CAS  Google Scholar 

  22. Chang, D.H. & Calame, K.L. The dynamic expression pattern of B lymphocyte induced maturation protein-1 (Blimp-1) during mouse embryonic development. Mech. Dev. 117, 305–309 (2002).

    Article  CAS  Google Scholar 

  23. Vincent, S.D. et al. The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development 132, 1315–1325 (2005).

    Article  CAS  Google Scholar 

  24. Ohinata, Y. et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436, 207–213 (2005).

    Article  CAS  Google Scholar 

  25. Coles, R.M., Mueller, S.N., Heath, W.R., Carbone, F.R. & Brooks, A.G. Progression of armed CTL from draining lymph node to spleen shortly after localized infection with herpes simplex virus 1. J. Immunol. 168, 834–838 (2002).

    Article  CAS  Google Scholar 

  26. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  Google Scholar 

  27. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  Google Scholar 

  28. Fontenot, J.D. et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22, 329–341 (2005).

    Article  CAS  Google Scholar 

  29. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    Article  CAS  Google Scholar 

  30. Annacker, O. et al. CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J. Immunol. 166, 3008–3018 (2001).

    Article  CAS  Google Scholar 

  31. Mottet, C., Uhlig, H.H. & Powrie, F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J. Immunol. 170, 3939–3943 (2003).

    Article  CAS  Google Scholar 

  32. Zeng, R. et al. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J. Exp. Med. 201, 139–148 (2005).

    Article  CAS  Google Scholar 

  33. Ranger, A.M., Oukka, M., Rengarajan, J. & Glimcher, L.H. Inhibitory function of two NFAT family members in lymphoid homeostasis and Th2 development. Immunity 9, 627–635 (1998).

    Article  CAS  Google Scholar 

  34. Malek, T.R. & Bayer, A.L. Tolerance, not immunity, crucially depends on IL-2. Nat. Rev. Immunol. 4, 665–674 (2004).

    Article  CAS  Google Scholar 

  35. Bopp, T. et al. NFATc2 and NFATc3 transcription factors play a crucial role in suppression of CD4+ T lymphocytes by CD4+ CD25+ regulatory T cells. J. Exp. Med. 201, 181–187 (2005).

    Article  CAS  Google Scholar 

  36. Marie, J.C., Letterio, J.J., Gavin, M. & Rudensky, A.Y. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 1061–1067 (2005).

    Article  CAS  Google Scholar 

  37. Bachmann, M.F., Kohler, G., Ecabert, B., Mak, T.W. & Kopf, M. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J. Immunol. 163, 1128–1131 (1999).

    CAS  Google Scholar 

  38. Bacchetta, R., Gregori, S. & Roncarolo, M.G. CD4+ regulatory T cells: mechanisms of induction and effector function. Autoimmun. Rev. 4, 491–496 (2005).

    Article  Google Scholar 

  39. Asseman, C., Read, S. & Powrie, F. Colitogenic Th1 cells are present in the antigen-experienced T cell pool in normal mice: control by CD4+ regulatory T cells and IL-10. J. Immunol. 171, 971–978 (2003).

    Article  CAS  Google Scholar 

  40. King, C., Ilic, A., Koelsch, K. & Sarvetnick, N. Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell 117, 265–277 (2004).

    Article  CAS  Google Scholar 

  41. Ozaki, K. et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J. Immunol. 173, 5361–5371 (2004).

    Article  CAS  Google Scholar 

  42. Keller, A.D. & Maniatis, T. Identification and characterization of a novel repressor of β-interferon gene expression. Genes Dev. 5, 868–879 (1991).

    Article  CAS  Google Scholar 

  43. Taki, S. Type I interferons and autoimmunity: lessons from the clinic and from IRF-2-deficient mice. Cytokine Growth Factor Rev. 13, 379–391 (2002).

    Article  CAS  Google Scholar 

  44. Badovinac, V.P., Porter, B.B. & Harty, J.T. Programmed contraction of CD8+ T cells after infection. Nat. Immunol. 3, 619–626 (2002).

    Article  CAS  Google Scholar 

  45. Brady, J., Hayakawa, Y., Smyth, M.J. & Nutt, S.L. IL-21 induces the functional maturation of murine NK cells. J. Immunol. 172, 2048–2058 (2004).

    Article  CAS  Google Scholar 

  46. Nutt, S.L. et al. Independent regulation of the two Pax5 alleles during B-cell development. Nat. Genet. 21, 390–395 (1999).

    Article  CAS  Google Scholar 

  47. Belz, G.T., Xie, W. & Doherty, P.C. Diversity of epitope and cytokine profiles for primary and secondary influenza a virus-specific CD8+ T cell responses. J. Immunol. 166, 4627–4633 (2001).

    Article  CAS  Google Scholar 

  48. Metcalf, D., Di Rago, L., Mifsud, S., Hartley, L. & Alexander, W.S. The development of fatal myocarditis and polymyositis in mice heterozygous for IFN-γ and lacking the SOCS-1 gene. Proc. Natl. Acad. Sci. USA 97, 9174–9179 (2000).

    Article  CAS  Google Scholar 

  49. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Carneli, K. D'Costa, L. Di Rago and J. Brady for assistance; D. Huang, G. Davey, Y. Zhan, J. Dromey, W. Heath, D. Tarlinton and A. Strasser for reagents, advice and critical reading of the manuscript; and S. Read (Bio21 Molecular Science and Biotechnology Institute, Melbourne, Victoria, Australia) for help in setting up and analyzing the colitis model. Supported by The Walter and Eliza Hall Institute (Metcalf Fellowship to S.L.N.), the Deutsche Forschungsgemeinschaft (A.K. and M.H.), the Leukaemia Foundation of Australia (A.K.), the National Institutes of Health (CA22556 to D.M.), the Wellcome Trust (G.T.B.), Howard Hughes International Fellowship (G.T.B.) and the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L Nutt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Blimp-1 controls the number of effector and memory CD4+ T cells. (PDF 831 kb)

Supplementary Methods (PDF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kallies, A., Hawkins, E., Belz, G. et al. Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nat Immunol 7, 466–474 (2006). https://doi.org/10.1038/ni1321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing