Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Germline-encoded recognition of diverse glycolipids by natural killer T cells

Abstract

Natural killer T cells expressing 'invariant' T cell receptor α-chains (TCRα chains) containing variable (V) and joining (J) region Vα14-Jα18 (Vα14i) rearrangements recognize both endogenous and microbial glycolipids in the context of CD1d. How cells expressing an invariant TCRα chain and a restricted set of TCRβ chains recognize structurally diverse antigens is not clear. Here we show that a Vα14i TCR recognized many α-linked glycolipids by means of a 'hot-spot' of germline-encoded amino acids in complementarity-determining regions 3α, 1α and 2β. This hot-spot did not shift during the recognition of structurally distinct antigens, suggesting that the Vα14i TCR functions as a pattern-recognition receptor, conferring on natural killer T cells the ability to sense and respond in an innate way to pathogens displaying antigenic α-linked glycolipids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A single Vα14i TCR recognizes five distinct glycolipids.
Figure 2: Substitution of the Vα14i TCR similarly affects the recognition of CD1d loaded with α-GalCer, PBS57 or OCH9.
Figure 3: Substitution of the Vα14i TCR similarly affects the recognition of CD1d loaded with GSL-1′ or iGb3.
Figure 4: Substitution of the Vα14i-DOβ TCR similarly affects the recognition of mouse and human CD1d.
Figure 5: CDR3β diversity does not mediate 'preferential' recognition of different glycolipid antigens.
Figure 6: A germline-encoded surface is required for recognition of CD1d-glycolipid complexes.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Rudolph, M.G., Stanfield, R.L. & Wilson, I.A. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24, 419–466 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Bendelac, A. et al. CD1 recognition by mouse NK1+ T lymphocytes. Science 268, 863–865 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Moody, D.B., Zajonc, D.M. & Wilson, I.A. Anatomy of CD1-lipid antigen complexes. Nat. Rev. Immunol. 5, 387–399 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Imai, K. et al. Sequence and expression of transcripts of the T-cell antigen receptor α-chain gene in a functional, antigen-specific suppressor-T-cell hybridoma. Proc. Natl. Acad. Sci. USA 83, 8708–8712 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lantz, O. & Bendelac, A. An invariant T cell receptor α chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD48 T cells in mice and humans. J. Exp. Med. 180, 1097–1106 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Dellabona, P., Padovan, E., Casorati, G., Brockhaus, M. & Lanzavecchia, A. An invariant Vα24-JαQ/Vβ11 T cell receptor is expressed in all individuals by clonally expanded CD48 T cells. J. Exp. Med. 180, 1171–1176 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Matsuda, J.L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parekh, V.V., Wilson, M.T. & Van Kaer, L. iNKT-cell responses to glycolipids. Crit. Rev. Immunol. 25, 183–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Tupin, E., Kinjo, Y. & Kronenberg, M. The unique role of natural killer T cells in the response to microorganisms. Nat. Rev. Microbiol. 5, 405–417 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Kinjo, Y. et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434, 520–525 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kinjo, Y. et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7, 978–986 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Gapin, L., Matsuda, J.L., Surh, C.D. & Kronenberg, M. NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat. Immunol. 2, 971–978 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Wei, D.G., Curran, S.A., Savage, P.B., Teyton, L. & Bendelac, A. Mechanisms imposing the Vβ bias of Vα14 natural killer T cells and consequences for microbial glycolipid recognition. J. Exp. Med. 203, 1197–1207 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matsuda, J.L. et al. Natural killer T cells reactive to a single glycolipid exhibit a highly diverse T cell receptor β repertoire and small clone size. Proc. Natl. Acad. Sci. USA 98, 12636–12641 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, Y. et al. A modified α-galactosyl ceramide for staining and stimulating natural killer T cells. J. Immunol. Methods 312, 34–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413, 531–534 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. McCarthy, C. et al. The length of lipids bound to human CD1d molecules modulates the affinity of NKT cell TCR and the threshold of NKT cell activation. J. Exp. Med. 204, 1131–1144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gadola, S.D. et al. Structure and binding kinetics of three different human CD1d-α-galactosylceramide-specific T cell receptors. J. Exp. Med. 203, 699–710 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kjer-Nielsen, L. et al. A structural basis for selection and cross-species reactivity of the semi-invariant NKT cell receptor in CD1d/glycolipid recognition. J. Exp. Med. 203, 661–673 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Manning, T.C. et al. Alanine scanning mutagenesis of an αβ T cell receptor: mapping the energy of antigen recognition. Immunity 8, 413–425 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Park, S.H. et al. The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J. Exp. Med. 193, 893–904 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, B., Chun, T. & Wang, C.R. Comparative contribution of CD1 on the development of CD4+ and CD8+ T cell compartments. J. Immunol. 164, 739–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Godfrey, D.I., MacDonald, H.R., Kronenberg, M., Smyth, M.J. & Van Kaer, L. NKT cells: what's in a name? Nat. Rev. Immunol. 4, 231–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Sim, B.C. et al. Surprisingly minor influence of TRAV11 (Vα14) polymorphism on NK T-receptor mCD1/α-galactosylceramide binding kinetics. Immunogenetics 54, 874–883 (2003).

    CAS  PubMed  Google Scholar 

  27. Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623–1626 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Godfrey, D.I., McCluskey, J. & Rossjohn, J. CD1d antigen presentation: treats for NKT cells. Nat. Immunol. 6, 754–756 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Gumperz, J.E. et al. Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12, 211–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Zajonc, D.M. et al. Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor. Nat. Immunol. 6, 810–818 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cantu, C. III, Benlagha, K., Savage, P.B., Bendelac, A. & Teyton, L. The paradox of immune molecular recognition of α-galactosylceramide: low affinity, low specificity for CD1d, high affinity for αβ TCRs. J. Immunol. 170, 4673–4682 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Brossay, L. et al. CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med. 188, 1521–1528 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koch, M. et al. The crystal structure of human CD1d with and without α-galactosylceramide. Nat. Immunol. 6, 819–826 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Rauch, J. et al. Structural features of the acyl chain determine self-phospholipid antigen recognition by a CD1d-restricted invariant NKT (iNKT) cell. J. Biol. Chem. 278, 47508–47515 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Gumperz, J.E. Antigen specificity of semi-invariant CD1d-restricted T cell receptors: the best of both worlds? Immunol. Cell Biol. 82, 285–294 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Borg, N.A. et al. CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448, 44–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Brigl, M. et al. Conserved and heterogeneous lipid antigen specificities of CD1d-restricted NKT cell receptors. J. Immunol. 176, 3625–3634 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Gadola, S.D., Dulphy, N., Salio, M. & Cerundolo, V. Vα24-JαQ-independent, CD1d-restricted recognition of α-galactosylceramide by human CD4+ and CD8αβ+ T lymphocytes. J. Immunol. 168, 5514–5520 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Sidobre, S. et al. The Vα14 NKT cell TCR exhibits high-affinity binding to a glycolipid/CD1d complex. J. Immunol. 169, 1340–1348 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Cunningham, B.C. & Wells, J.A. Comparison of a structural and a functional epitope. J. Mol. Biol. 234, 554–563 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Borg, N.A. et al. The CDR3 regions of an immunodominant T cell receptor dictate the 'energetic landscape' of peptide-MHC recognition. Nat. Immunol. 6, 171–180 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, P.U., Churchill, H.R., Daniels, M., Jameson, S.C. & Kranz, D.M. Role of 2CT cell receptor residues in the binding of self- and allo-major histocompatibility complexes. J. Exp. Med. 191, 1355–1364 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sidobre, S. et al. The T cell antigen receptor expressed by Vα14i NKT cells has a unique mode of glycosphingolipid antigen recognition. Proc. Natl. Acad. Sci. USA 101, 12254–12259 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tynan, F.E. et al. A T cell receptor flattens a bulged antigenic peptide presented by a major histocompatibility complex class I molecule. Nat. Immunol. 8, 268–276 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Schumann, J., Mycko, M.P., Dellabona, P., Casorati, G. & MacDonald, H.R. Cutting edge: influence of the TCR Vβ domain on the selection of semi-invariant NKT cells by endogenous ligands. J. Immunol. 176, 2064–2068 (2006).

    Article  PubMed  Google Scholar 

  46. Andersen-Nissen, E., Smith, K.D., Bonneau, R., Strong, R.K. & Aderem, A. A conserved surface on Toll-like receptor 5 recognizes bacterial flagellin. J. Exp. Med. 204, 393–403 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bell, J.K., Askins, J., Hall, P.R., Davies, D.R. & Segal, D.M. The dsRNA binding site of human Toll-like receptor 3. Proc. Natl. Acad. Sci. USA 103, 8792–8797 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kinjo, Y. & Kronenberg, M. Vα14i NKT cells are innate lymphocytes that participate in the immune response to diverse microbes. J. Clin. Immunol. 25, 522–533 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Bendelac, A. & Medzhitov, R. Adjuvants of immunity: harnessing innate immunity to promote adaptive immunity. J. Exp. Med. 195, F19–F23 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arden, B., Clark, S.P., Kabelitz, D. & Mak, T.W. Mouse T-cell receptor variable gene segment families. Immunogenetics 42, 501–530 (1995).

    CAS  PubMed  Google Scholar 

  51. Arden, B., Clark, S.P., Kabelitz, D. & Mak, T.W. Human T-cell receptor variable gene segment families. Immunogenetics 42, 455–500 (1995).

    CAS  PubMed  Google Scholar 

  52. Seibel, J.L., Wilson, N., Kozono, H., Marrack, P. & Kappler, J.W. Influence of the NH2-terminal amino acid of the T cell receptor α chain on major histocompatibility complex (MHC) class II + peptide recognition. J. Exp. Med. 185, 1919–1927 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. White, J., Pullen, A., Choi, K., Marrack, P. & Kappler, J.W. Antigen recognition properties of mutant Vβ3+ T cell receptors are consistent with an immunoglobulin-like structure for the receptor. J. Exp. Med. 177, 119–125 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Huseby, E.S., Crawford, F., White, J., Marrack, P. & Kappler, J.W. Interface-disrupting amino acids establish specificity between T cell receptors and complexes of major histocompatibility complex and peptide. Nat. Immunol. 7, 1191–1199 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Cambier, P. Henson, E. Huseby and R. Torres for discussions and comments on the manuscript; J. Loomis for assistance with flow cytometry; and the National Institutes of Health core facility for CD1d tetramers. The GSL-1′ compound was provided by M. Kronenberg and Y. Kinjo (La Jolla Institute for Allergy and Immunology); the mouse stem cell virus–based retroviral plasmids with a human nerve growth factor reporter were provided by S. Reiner (University of Pennsylvania); and B78hi cells were provided by H. Levitski (Johns Hopkins University). Supported by the National Institutes of Health (AI057485 to L.G., AI18785 to P.M. and AI17134 to J.K.), the Howard Hughes Medical Institute (P.M. and J.K.), the Australian Research Council Federation (J.R.), the National Health and Medical Research Council (J.M. and J.R.; Peter Doherty Fellowship to N.A.B.), the Cancer Council of Victoria (J.M. and J.R.) and the American Cancer Society (J.L.M.).

Author information

Authors and Affiliations

Authors

Contributions

J.P.S.-B., J.L.M., T.M. and L.G. did the experimental work and analysis and prepared the manuscript; J.W., N.A.B., J.M. and J.R. provided reagents and crystallographic data; and J.P.S.-B., J.K., P.M. and L.G. devised the project, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Laurent Gapin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 1191 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott-Browne, J., Matsuda, J., Mallevaey, T. et al. Germline-encoded recognition of diverse glycolipids by natural killer T cells. Nat Immunol 8, 1105–1113 (2007). https://doi.org/10.1038/ni1510

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1510

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing