Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dual roles for hepatic lectin receptors in the clearance of chilled platelets

Abstract

Rapid chilling causes glycoprotein-Ib (GPIb) receptors to cluster on blood platelets. Hepatic macrophage β2 integrin binding to β-N-acetylglucosamine (β-GlcNAc) residues in the clusters leads to rapid clearance of acutely chilled platelets after transfusion. Although capping the β-GlcNAc moieties by galactosylation prevents clearance of short-term–cooled platelets, this strategy is ineffective after prolonged refrigeration. We report here that prolonged refrigeration increased the density and concentration of exposed galactose residues on platelets such that hepatocytes, through Ashwell-Morell receptor binding, become increasingly involved in platelet removal. Macrophages rapidly removed a large fraction of transfused platelets independent of their storage conditions. With prolonged platelet chilling, hepatocyte-dependent clearance further diminishes platelet recovery and survival after transfusion. Inhibition of chilled platelet clearance by both β2 integrin and Ashwell-Morell receptors may afford a potentially simple method for storing platelets in the cold.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hepatocytes clear long-term refrigerated platelets.
Figure 2: HepG2 cells ingest long-term–refrigerated human platelets in vitro.
Figure 3: The Ashwell-Morell receptor mediates hepatic recognition and clearance of long-term-refrigerated platelets.
Figure 4: Asialoglycoproteins on long-term–refrigerated human platelets are targets for the Ashwell-Morell receptor on HepG2 cells.
Figure 5: The extracellular domain of GPIb-α is required for recognition of platelets by the Ashwell-Morell receptor.

Similar content being viewed by others

References

  1. Becker, G.A, Tuccelli, M., Kunicki, T., Chalos, M.K. & Aster, R.H. Studies of platelet concentrates stored at 22 °C and 4 °C. Transfusion 13, 61–68 (1973).

    Article  CAS  Google Scholar 

  2. Hoffmeister, K.M. et al. The clearance mechanism of chilled blood platelets. Cell 112, 87–97 (2003).

    Article  CAS  Google Scholar 

  3. Murphy, S. & Gardner, F. Effect of storage temperature on maintenance of platelet viability–deleterious effect of refrigerated storage. N. Engl. J. Med. 280, 1094–1098 (1969).

    Article  CAS  Google Scholar 

  4. Kuehnert, M.J. et al. Transfusion-transmitted bacterial infection in the United States, 1998 through 2000. Transfusion 41, 1493–1499 (2001).

    Article  CAS  Google Scholar 

  5. Blajchman, M. Bacterial contamination of blood products. Transfus. Apher. Sci. 24, 245 (2001).

    Article  CAS  Google Scholar 

  6. Sullivan, M.T., Cotten, R., Read, E.J. & Wallace, E.L. Blood collection and transfusion in the United States in 2001. Transfusion 3, (2001).

  7. McCullough, J. Transfusion Medicine 2011–2068 (Lipincott Wilkins & Williams, Philadelphia, 2003).

  8. Webert, K.E. et al. Proceedings of a Consensus Conference: pathogen inactivation-making decisions about new technologies. Transfus. Med. Rev. 22, 1–34 (2008).

    Article  Google Scholar 

  9. Hoffmeister, K.M. et al. Glycosylation restores survival of chilled blood platelets. Science 301, 1531–1534 (2003).

    Article  CAS  Google Scholar 

  10. Wandall, H.H. et al. Galactosylation does not prevent the rapid clearance of long-term, 4 °C–stored platelets. Blood 111, 3249–3256 (2008).

    Article  CAS  Google Scholar 

  11. McGill, M. Temperature cycling preserves platelet shape and enhances in vitro test scores during storage at 4 degrees. J. Lab. Clin. Med. 92, 971–982 (1978).

    CAS  PubMed  Google Scholar 

  12. McGill, M. Platelet storage by temperature cycling. Prog. Clin. Biol. Res. 28, 119–139 (1978).

    CAS  PubMed  Google Scholar 

  13. Valeri, C.R., Giorgio, A., Macgregor, H. & Ragno, G. Circulation and distribution of autotransfused fresh, liquid-preserved and cryopreserved baboon platelets. Vox Sang. 83, 347–351 (2002).

    Article  CAS  Google Scholar 

  14. Alves-Rosa, F. et al. Macrophage depletion following liposomal-encapsulated clodronate (LIP-CLOD) injection enhances megakaryocytopoietic and thrombopoietic activities in mice. Br. J. Haematol. 121, 130–138 (2003).

    Article  CAS  Google Scholar 

  15. van Rooijen, N. & van Nieuwmegen, R. Elimination of phagocytic cells in the spleen after intravenous injection of liposome-encapsulated dichloromethylene diphosphonate: an enzyme-histochemical study. Cell Tissue Res. 238, 355–358 (1984).

    Article  CAS  Google Scholar 

  16. van Rooijen, N. van Kesteren-Hendrikx, E. “In vivo” depletion of macrophages by liposome-mediated “suicide”. Methods Enzymol. 373, 3–16 (2003).

    Article  CAS  Google Scholar 

  17. Josefsson, E.C., Gebhard, H.H., Stossel, T.P., Hartwig, J.H. & Hoffmeister, K.M. The macrophage αMβ2 integrin αM lectin domain mediates the phagocytosis of chilled platelets. J. Biol. Chem. 280, 18025–18032 (2005).

    Article  CAS  Google Scholar 

  18. Grewal, P.K. et al. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat. Med. 14, 648–655 (2008).

    Article  CAS  Google Scholar 

  19. Berndt, M.C. et al. Purification and preliminary characterization of the glycoprotein Ib complex in the human platelet membrane. Eur. J. Biochem. 151, 637–649 (1985).

    Article  CAS  Google Scholar 

  20. Lopez, J.A. et al. Cloning of the α chain of human platelet glycoprotein Ib: a transmembrane protein with homology to leucine-rich α 2-glycoprotein. Proc. Natl. Acad. Sci. USA 84, 5615–5619 (1987).

    Article  CAS  Google Scholar 

  21. Tsuji, T. et al. The carbohydrate moiety of human platelet glycocalicin. J. Biol. Chem. 258, 6335–6339 (1983).

    CAS  PubMed  Google Scholar 

  22. Tsuji, T. & Osawa, T. The carbohydrate moiety of human platelet glycocalicin: the structures of the major Asn-linked sugar chains. J. Biochem. 101, 241–249 (1987).

    Article  CAS  Google Scholar 

  23. Ezzell, R., Kenney, D., Egan, S., Stossel, T. & Hartwig, J. Localization of the domain of actin-binding protein that binds to membrane glycoprotein Ib and actin in human platelets. J. Biol. Chem. 263, 13303–13309 (1988).

    CAS  PubMed  Google Scholar 

  24. Rensen, P.C. et al. Detemination of the upper size limit for uptake and processing of ligands by the asialoglycoprotein receptor on hepacytes in vitro and in vivo. J. Biol. Chem. 276, 37577–37584 (2001).

    Article  CAS  Google Scholar 

  25. Ozaki, K., Lee, R.T., Lee, Y.C. & Kawasaki, T. The differences in structural specificity for recognition and binding between asialoglycoprotein receptors of liver and macrophages. Glycoconj. J. 12, 268–274 (1995).

    Article  CAS  Google Scholar 

  26. Schlepper-Schäfer, J. et al. Endocytosis via galactose receptors in vivo. Ligand size directs uptake by hepatocytes and/or liver macrophages. Exp. Cell Res. 165, 494–506 (1986).

    Article  Google Scholar 

  27. Kolb-Bachofen, V., Schlepper-Schafer, J., Roos, P., Hulsmann, D. & Kolb, H. GalNAc/Gal-specific rat liver lectins: their role in cellular recognition. Biol. Cell 51, 219–226 (1984).

    Article  CAS  Google Scholar 

  28. Mason, K.D. et al. Programmed anuclear cell death delimits platelet life span. Cell 128, 1173–1186 (2007).

    Article  CAS  Google Scholar 

  29. Ellies, L.G. et al. Sialyltransferase ST3Gal-IV operates as a dominant modifier of hemostasis by concealing asialoglycoprotein receptor ligands. Proc. Natl. Acad. Sci. USA 99, 10042–10047 (2002).

    Article  CAS  Google Scholar 

  30. Hoffmeister, K.M. et al. Mechanisms of cold-induced platelet actin assembly. J. Biol. Chem. 276, 24751–24759 (2001).

    Article  CAS  Google Scholar 

  31. Crowe, J.H. et al. Stabilization of membranes in human platelets freeze-dried with trehalose. Chem. Phys. Lipids 122, 41–52 (2003).

    Article  CAS  Google Scholar 

  32. Gousset, K., Tsvetkova, N.M., Crowe, J.H. & Tablin, F. Important role of raft aggregation in the signaling events of cold-induced platelet activation. Biochim. Biophys. Acta 1660, 7–15 (2004).

    Article  CAS  Google Scholar 

  33. Leidy, C. et al. Lipid phase behavior and stabilization of domains in membranes of platelets. Cell Biochem. Biophys. 40, 123–148 (2004).

    Article  CAS  Google Scholar 

  34. Bergmeier, W. et al. Metalloproteinase inhibitors improve the recovery and hemostatic function of in vitro–aged or –injured mouse platelets. Blood 102, 4229–4235 (2003).

    Article  CAS  Google Scholar 

  35. Korrel, S. et al. Identification of a tetrasialylated monofucosylated tetraantennary N-linked carbohydrate chain in human platelet glycocalicin. FEBS Lett. 228, 321–326 (1988).

    Article  CAS  Google Scholar 

  36. Tsuji, T. & Osawa, T. The carbohydrate moiety of human platelet glycocalicin: the structures of the major Asn-linked sugar chains. J. Biochem. 101, 241–249 (1987).

    Article  CAS  Google Scholar 

  37. Korrel, S.A. et al. Structural studies on the O-linked carbohydrate chains of human platelet glycocalicin. Eur. J. Biochem. 140, 571–576 (1984).

    Article  CAS  Google Scholar 

  38. Ward, C., Andrews, R., Smith, A. & Berndt, M. Mocarhagin, a novel cobra venom metalloproteinase, cleaves the platelet von Willebrandt factor receptor glycoprotein Ibα. Identification of the sulfated tyrosine/anionic sequence Tyr-276-Glu-282 of glycoprotein Ibα as a binding site for von Willebrandt factor and α-thrombin. Biochemistry 35, 4929–4938 (1996).

    Article  CAS  Google Scholar 

  39. Bergmeier, W. et al. Tumor necrosis factor-α–converting enzyme (ADAM17) mediates GPIbα shedding from platelets in vitro and in vivo. Circ. Res. 95, 677–683 (2004).

    Article  CAS  Google Scholar 

  40. Denis, C.V., Christophe, O.D., Oortwijn, B.D. & Lenting, P.J. Clearance of von Willebrand factor. Thromb. Haemost. 99, 271–278 (2008).

    Article  CAS  Google Scholar 

  41. Reimers, H.J., Greenberg, J., Cazenave, J.P., Packham, M.A. & Mustard, J.F. Experimental modification of platelet survival. Adv. Exp. Med. Biol. 82, 231–233 (1977).

    CAS  PubMed  Google Scholar 

  42. Wahrenbrock, M.G. & Varki, A. Multiple hepatic receptors cooperate to eliminate secretory mucins aberrantly entering the bloodstream: are circulating carcer mucins the “tip of the iceberg”? Cancer Res. 66, 2433–2441 (2006).

    Article  CAS  Google Scholar 

  43. Barber, A.J. & Jamieson, G.A. Platelet collagen adhesion characterization of collagen glucosyltransferase of plasma membranes of human blood platelets. Biochim. Biophys. Acta 252, 533–545 (1971).

    Article  CAS  Google Scholar 

  44. Bauvois, B. et al. Membrane glycoprotein IIb is the major endogenous acceptor for human platelet ectosialyltransferase. FEBS Lett. 125, 277–281 (1981).

    Article  CAS  Google Scholar 

  45. Soukharev, S., Miller, J.L. & Sauer, B. Segmental genomic replacement in embryonic stem cells by double lox targeting. Nucleic Acids Res. 27, e21 (1999).

    Article  CAS  Google Scholar 

  46. Ishibashi, S., Hammer, R.E. & Herz, J. Asialoglycoprotein receptor deficiency in mice lacking the minor receptor subunit. J. Biol. Chem. 269, 27803–27806 (1994).

    CAS  Google Scholar 

  47. Prior, I.A., Parton, R.G. & Hancock, J.F. Observing cell surface signaling domains using electron microscopy. Sci. STKE 2003, PL9 (2003).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Nayeb-Hashemi for excellent technical assistance, H. Clausen for helpful discussions and F. Maignen for statistical expertise. This work was supported by US National Institutes of Health grant PO1 HL056949 (to J.H.H. and K.M.H.) and grant HL089224 (to K.M.H.); The Pew Scholars Award to K.M.H.; PO1HL57345 (to J.D.M.); Howard Hughes Medical Institute to J.D.M.; and The Swedish Medical Research Council, Göteborg University Jubileums stipend to V.R. and K.M.H. V.R. and H.H.W. received sponsored research support form ZymeQuest, Inc. We obtained macros for K-function analysis from J. Hancock at the Institute for Molecular Bioscience, University of Queensland.

Author information

Authors and Affiliations

Authors

Contributions

V.R. wrote the manuscript, planned and performed experiments, data analysis and presentation of all figures; P.K.G. provided Asgr-knockout mice and performed experiments; H.H.W. designed research; E.C.J. performed and analyzed experiments; A.L.S. designed research; G.L. designed research; J.D.M. provided Asgr-knockout mice, laboratory space and equipment; J.H.H. wrote the manuscript and performed experiments; K.M.H. designed research, wrote the manuscript and performed experiments.

Corresponding author

Correspondence to Karin M Hoffmeister.

Ethics declarations

Competing interests

H.H.W. and K.M.H. are consultants for ZymeQuest. H.H.W. has stock options in ZymeQuest. H.H.W., K.M.H. and V.R. received sponsored research support form ZymeQuest.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Methods (PDF 524 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rumjantseva, V., Grewal, P., Wandall, H. et al. Dual roles for hepatic lectin receptors in the clearance of chilled platelets. Nat Med 15, 1273–1280 (2009). https://doi.org/10.1038/nm.2030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2030

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing