Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors

Abstract

Muscle paralysis after spinal cord injury is partly caused by a loss of brainstem-derived serotonin (5-HT), which normally maintains motoneuron excitability by regulating crucial persistent calcium currents. Here we examine how over time motoneurons compensate for lost 5-HT to regain excitability. We find that, months after a spinal transection in rats, changes in post-transcriptional editing of 5-HT2C receptor mRNA lead to increased expression of 5-HT2C receptor isoforms that are spontaneously active (constitutively active) without 5-HT. Such constitutive receptor activity restores large persistent calcium currents in motoneurons in the absence of 5-HT. We show that this helps motoneurons recover their ability to produce sustained muscle contractions and ultimately enables recovery of motor functions such as locomotion. However, without regulation from the brain, these sustained contractions can also cause debilitating muscle spasms. Accordingly, blocking constitutively active 5-HT2C receptors with SB206553 or cyproheptadine, in both rats and humans, largely eliminates these calcium currents and muscle spasms, providing a new rationale for antispastic drug therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Constitutive 5-HT2 receptor activity, but not residual 5-HT, causes spasms.
Figure 2: Constitutive 5-HT2 receptor activity contributes to LLRs in the isolated spinal cord in vitro.
Figure 3: Constitutively active 5-HT2 receptors on motoneurons contribute to Ca2+ PICs underlying spasms.
Figure 4: A highly constitutively active 5-HT2C receptor isoform is upregulated with injury.
Figure 5: 5-HT2 receptor inverse agonist blocks spasms in spinal cord injured humans.
Figure 6: Spontaneous recovery of locomotion in staggered-hemisected rats depends on constitutively active 5-HT2 receptors.

Similar content being viewed by others

References

  1. Rekling, J.C., Funk, G.D., Bayliss, D.A., Dong, X.W. & Feldman, J.L. Synaptic control of motoneuronal excitability. Physiol. Rev. 80, 767–852 (2000).

    Article  CAS  Google Scholar 

  2. Hultborn, H., Denton, M.E., Wienecke, J. & Nielsen, J.B. Variable amplification of synaptic input to cat spinal motoneurones by dendritic persistent inward current. J. Physiol. (Lond.) 552, 945–952 (2003).

    Article  CAS  Google Scholar 

  3. Carlsson, A., Magnusson, T. & Rosengren, E. 5-hydroxytryptamine of the spinal cord normally and after transection. Experientia 19, 359 (1963).

    Article  CAS  Google Scholar 

  4. Jacobs, B.L., Martin-Cora, F.J. & Fornal, C.A. Activity of medullary serotonergic neurons in freely moving animals. Brain Res. Brain Res. Rev. 40, 45–52 (2002).

    Article  CAS  Google Scholar 

  5. Jordan, L.M., Liu, J., Hedlund, P.B., Akay, T. & Pearson, K.G. Descending command systems for the initiation of locomotion in mammals. Brain Res. Rev. 57, 183–191 (2008).

    Article  CAS  Google Scholar 

  6. Perrier, J.F. & Delgado-Lezama, R. Synaptic release of serotonin induced by stimulation of the raphe nucleus promotes plateau potentials in spinal motoneurons of the adult turtle. J. Neurosci. 25, 7993–7999 (2005).

    Article  CAS  Google Scholar 

  7. Hounsgaard, J., Hultborn, H., Jespersen, B. & Kiehn, O. Bistability of α-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan. J. Physiol. (Lond.) 405, 345–367 (1988).

    Article  Google Scholar 

  8. Li, X., Murray, K., Harvey, P.J., Ballou, E.W. & Bennett, D.J. Serotonin facilitates a persistent calcium current in motoneurons of rats with and without chronic spinal cord injury. J. Neurophysiol. 97, 1236–1246 (2007).

    Article  CAS  Google Scholar 

  9. Perrier, J.F. & Hounsgaard, J. 5–HT2 receptors promote plateau potentials in turtle spinal motoneurons by facilitating an L-type calcium current. J. Neurophysiol. 89, 954–959 (2003).

    Article  CAS  Google Scholar 

  10. Harvey, P.J., Li, X., Li, Y. & Bennett, D.J. 5–HT2 receptor activation facilitates a persistent sodium current and repetitive firing in spinal motoneurons of rats with and without chronic spinal cord injury. J. Neurophysiol. 96, 1158–1170 (2006).

    Article  CAS  Google Scholar 

  11. Heckmann, C.J., Gorassini, M.A. & Bennett, D.J. Persistent inward currents in motoneuron dendrites: implications for motor output. Muscle Nerve 31, 135–156 (2005).

    Article  CAS  Google Scholar 

  12. Li, Y., Gorassini, M.A. & Bennett, D.J. Role of persistent sodium and calcium currents in motoneuron firing and spasticity in chronic spinal rats. J. Neurophysiol. 91, 767–783 (2004).

    Article  CAS  Google Scholar 

  13. Carlin, K.P., Jiang, Z. & Brownstone, R.M. Characterization of calcium currents in functionally mature mouse spinal motoneurons. Eur. J. Neurosci. 12, 1624–1634 (2000).

    Article  CAS  Google Scholar 

  14. Brownstone, R.M., Gossard, J.P. & Hultborn, H. Voltage-dependent excitation of motoneurones from spinal locomotor centres in the cat. Exp. Brain Res. 102, 34–44 (1994).

    Article  CAS  Google Scholar 

  15. Harvey, P.J., Li, Y., Li, X. & Bennett, D.J. Persistent sodium currents and repetitive firing in motoneurons of the sacrocaudal spinal cord of adult rats. J. Neurophysiol. 96, 1141–1157 (2006).

    Article  CAS  Google Scholar 

  16. Bennett, D.J. et al. Spasticity in rats with sacral spinal cord injury. J. Neurotrauma 16, 69–84 (1999).

    Article  CAS  Google Scholar 

  17. Bennett, D.J., Sanelli, L., Cooke, C., Harvey, P.J. & Gorassini, M.A. Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury. J. Neurophysiol. 91, 2247–2258 (2004).

    Article  CAS  Google Scholar 

  18. Kuhn, R.A. & Macht, M.B. Some manifestations of reflex activity in spinal man with particular reference to the occurrence of extensor spasm. Bull. Johns Hopkins Hosp. 84, 43–75 (1949).

    CAS  PubMed  Google Scholar 

  19. Ung, R.V. et al. Role of spinal 5–HT2 receptor subtypes in quipazine-induced hindlimb movements after a low-thoracic spinal cord transection. Eur. J. Neurosci. 28, 2231–2242 (2008).

    Article  Google Scholar 

  20. Button, D.C. et al. Does elimination of afferent input modify the changes in rat motoneurone properties that occur following chronic spinal cord transection? J. Physiol. (Lond.) 586, 529–544 (2008).

    Article  CAS  Google Scholar 

  21. Boulenguez, P. et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat. Med. 16, 302–307 (2010).

    Article  CAS  Google Scholar 

  22. Crone, C., Johnsen, L.L., Biering-Sorensen, F. & Nielsen, J.B. Appearance of reciprocal facilitation of ankle extensors from ankle flexors in patients with stroke or spinal cord injury. Brain 126, 495–507 (2003).

    Article  CAS  Google Scholar 

  23. Norton, J.A., Bennett, D.J., Knash, M.E., Murray, K.C. & Gorassini, M.A. Changes in sensory-evoked synaptic activation of motoneurons after spinal cord injury in man. Brain 131, 1478–1491 (2008).

    Article  Google Scholar 

  24. Baldissera, F., Hultborn, H. & Illert, M. Integration in spinal neuronal systems. in Handbook of Physiology. The Nervous System. Motor Control (ed. Brooks, V.B.) 509–595 (American Physiological Society, Bethesda, Maryland, 1981).

  25. Shefchyk, S.J. & Jordan, L.M. Excitatory and inhibitory postsynaptic potentials in alpha-motoneurons produced during fictive locomotion by stimulation of the mesencephalic locomotor region. J. Neurophysiol. 53, 1345–1355 (1985).

    Article  CAS  Google Scholar 

  26. Wallis, D.I., Wu, J. & Wang, X. Descending inhibition in the neonate rat spinal cord is mediated by 5-hydroxytryptamine. Neuropharmacology 32, 73–83 (1993).

    Article  CAS  Google Scholar 

  27. Gorassini, M.A., Knash, M.E., Harvey, P.J., Bennett, D.J. & Yang, J.F. Role of motoneurons in the generation of muscle spasms after spinal cord injury. Brain 127, 2247–2258 (2004).

    Article  Google Scholar 

  28. Baker, L.L. & Chandler, S.H. Characterization of postsynaptic potentials evoked by sural nerve stimulation in hindlimb motoneurons from acute and chronic spinal cats. Brain Res. 420, 340–350 (1987).

    Article  CAS  Google Scholar 

  29. Dietz, V. & Sinkjaer, T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 6, 725–733 (2007).

    Article  Google Scholar 

  30. Ashby, P. & McCrea, D.A. Neurphysiology of spinal spasticity. in Handbook of the Spinal Cord (ed. Davidoff, R.A.) 119–143 (Dekker, New York, 1987).

  31. Seifert, R. & Wenzel-Seifert, K. Constitutive activity of G protein–coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch. Pharmacol. 366, 381–416 (2002).

    Article  CAS  Google Scholar 

  32. Herrick-Davis, K., Grinde, E. & Niswender, C.M. Serotonin 5–HT2C receptor RNA editing alters receptor basal activity: implications for serotonergic signal transduction. J. Neurochem. 73, 1711–1717 (1999).

    Article  CAS  Google Scholar 

  33. Westphal, R.S. & Sanders-Bush, E. Reciprocal binding properties of 5-hydroxytryptamine type 2C receptor agonists and inverse agonists. Mol. Pharmacol. 46, 937–942 (1994).

    CAS  PubMed  Google Scholar 

  34. Chanrion, B. et al. Inverse agonist and neutral antagonist actions of antidepressants at recombinant and native 5-hydroxytryptamine2C receptors: differential modulation of cell surface expression and signal transduction. Mol. Pharmacol. 73, 748–757 (2008).

    Article  CAS  Google Scholar 

  35. Niswender, C.M., Copeland, S.C., Herrick-Davis, K., Emeson, R.B. & Sanders-Bush, E. RNA editing of the human serotonin 5-hydroxytryptamine 2C receptor silences constitutive activity. J. Biol. Chem. 274, 9472–9478 (1999).

    Article  CAS  Google Scholar 

  36. Berg, K.A., Dunlop, J., Sanchez, T., Silva, M. & Clarke, W.P. A conservative, single-amino acid substitution in the second cytoplasmic domain of the human Serotonin2C receptor alters both ligand-dependent and -independent receptor signaling. J. Pharmacol. Exp. Ther. 324, 1084–1092 (2008).

    Article  CAS  Google Scholar 

  37. Marion, S., Weiner, D.M. & Caron, M.G. RNA editing induces variation in desensitization and trafficking of 5-hydroxytryptamine 2c receptor isoforms. J. Biol. Chem. 279, 2945–2954 (2004).

    Article  CAS  Google Scholar 

  38. Gurevich, I., Englander, M.T., Adlersberg, M., Siegal, N.B. & Schmauss, C. Modulation of serotonin 2C receptor editing by sustained changes in serotonergic neurotransmission. J. Neurosci. 22, 10529–10532 (2002).

    Article  CAS  Google Scholar 

  39. Newton, B.W. & Hamill, R.W. The morphology and distribution of rat serotoninergic intraspinal neurons: an immunohistochemical study. Brain Res. Bull. 20, 349–360 (1988).

    Article  CAS  Google Scholar 

  40. Nakae, A. et al. Serotonin2C receptor mRNA editing in neuropathic pain model. Neurosci. Res. 60, 228–231 (2008).

    Article  CAS  Google Scholar 

  41. Courtine, G. et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat. Med. 14, 69–74 (2008).

    Article  CAS  Google Scholar 

  42. Basso, D.M., Beattie, M.S. & Bresnahan, J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma 12, 1–21 (1995).

    Article  CAS  Google Scholar 

  43. Wainberg, M., Barbeau, H. & Gauthier, S. The effects of cyproheptadine on locomotion and on spasticity in patients with spinal cord injuries. J. Neurol. Neurosurg. Psychiatry 53, 754–763 (1990).

    Article  CAS  Google Scholar 

  44. Barbeau, H., Richards, C.L. & Bedard, P.J. Action of cyproheptadine in spastic paraparetic patients. J. Neurol. Neurosurg. Psychiatry 45, 923–926 (1982).

    Article  CAS  Google Scholar 

  45. Li, Y., Li, X., Harvey, P.J. & Bennett, D.J. Effects of baclofen on spinal reflexes and persistent inward currents in motoneurons of chronic spinal rats with spasticity. J. Neurophysiol. 92, 2694–2703 (2004).

    Article  CAS  Google Scholar 

  46. Davidoff, R.A. Antispasticity drugs: mechanisms of action. Ann. Neurol. 17, 107–116 (1985).

    Article  CAS  Google Scholar 

  47. Kennett, G.A. et al. In vitro and in vivo profile of SB 206553, a potent 5–HT2C/5–HT2B receptor antagonist with anxiolytic-like properties. Br. J. Pharmacol. 117, 427–434 (1996).

    Article  CAS  Google Scholar 

  48. Kennett, G.A. et al. SB 242084, a selective and brain penetrant 5–HT2C receptor antagonist. Neuropharmacology 36, 609–620 (1997).

    Article  CAS  Google Scholar 

  49. Knight, A.R. et al. Pharmacological characterisation of the agonist radioligand binding site of 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors. Naunyn Schmiedebergs Arch. Pharmacol. 370, 114–123 (2004).

    Article  CAS  Google Scholar 

  50. Hoyer, D., Hannon, J.P. & Martin, G.R. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 71, 533–554 (2002).

    Article  CAS  Google Scholar 

  51. Mizuno, N. & Itoh, H. Functions and regulatory mechanisms of Gq-signaling pathways. Neurosignals 17, 42–54 (2009).

    Article  CAS  Google Scholar 

  52. Mejia-Gervacio, S., Hounsgaard, J. & Diaz-Munoz, M. Roles of ryanodine and inositol triphosphate receptors in regulation of plateau potentials in turtle spinal motoneurons. Neuroscience 123, 123–130 (2004).

    Article  CAS  Google Scholar 

  53. Perrier, J.F., Mejia-Gervacio, S. & Hounsgaard, J. Facilitation of plateau potentials in turtle motoneurones by a pathway dependent on calcium and calmodulin. J. Physiol. (Lond.) 528, 107–113 (2000).

    Article  CAS  Google Scholar 

  54. Holohean, A.M. & Hackman, J.C. Mechanisms intrinsic to 5–HT2B receptor-induced potentiation of NMDA receptor responses in frog motoneurones. Br. J. Pharmacol. 143, 351–360 (2004).

    Article  CAS  Google Scholar 

  55. Hayashi, Y. et al. 5-HT precursor loading, but not 5-HT receptor agonists, increases motor function after spinal cord contusion in adult rats. Exp. Neurol. 221, 68–78 (2010).

    Article  CAS  Google Scholar 

  56. McGrew, L., Price, R.D., Hackler, E., Chang, M.S. & Sanders-Bush, E. RNA editing of the human serotonin 5–HT2C receptor disrupts transactivation of the small G-protein RhoA. Mol. Pharmacol. 65, 252–256 (2004).

    Article  CAS  Google Scholar 

  57. Turrigiano, G., Abbott, L.F. & Marder, E. Activity-dependent changes in the intrinsic properties of cultured neurons. Science 264, 974–977 (1994).

    Article  CAS  Google Scholar 

  58. Gorassini, M.A., Norton, J.A., Nevett-Duchcherer, J., Roy, F.D. & Yang, J.F. Changes in locomotor muscle activity after treadmill training in subjects with incomplete spinal cord injury. J. Neurophysiol. 101, 969–979 (2009).

    Article  Google Scholar 

  59. Rank, M.M., Li, X., Bennett, D.J. & Gorassini, M.A. Role of endogenous release of norepinephrine in muscle spasms after chronic spinal cord injury. J. Neurophysiol. 97, 3166–3180 (2007).

    Article  CAS  Google Scholar 

  60. Mestre, C., Pelissier, T., Fialip, J., Wilcox, G. & Eschalier, A. A method to perform direct transcutaneous intrathecal injection in rats. J. Pharmacol. Toxicol. Methods 32, 197–200 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to F. Geddes, T. Tanaka, K. Miyake, G. Van Patten, J. Nevett-Duchcherer, G. Funk, M. Finlay and L. Hahn for assistance. This research was supported by the Alberta Heritage Foundation, Canadian Institutes of Health Research and the US National Institutes of Health (NS47567 and NS48170).

Author information

Authors and Affiliations

Authors

Contributions

K.C.M. performed the in vitro rat experiments, contributed to all other rat studies and co-wrote the paper. M.R., P.J.H., R.L., W.H., L.S., M.J.S., R.V., X.L. and K.F. contributed to the in vivo rat experiments. K.F., R.V., E.W.B., R.A. and C.J.H. contributed to immunolabeling experiments. K.F. co-wrote the paper and shared equally with D.J.B. in senior authorship (last author). A.N. and T.M. conducted mRNA analysis. J.D. and M.A.G. conducted the human experiments. D.J.B. performed in vitro and in vivo rat experiments, supervised or co-supervised all of the experiments and co-wrote the paper.

Corresponding author

Correspondence to David J Bennett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Table 1 and Supplementary Methods (PDF 702 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, K., Nakae, A., Stephens, M. et al. Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nat Med 16, 694–700 (2010). https://doi.org/10.1038/nm.2160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing