Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape

Abstract

Breast cancer metastasis is a key determinant of long-term patient survival. By comparing the transcriptomes of primary and metastatic tumor cells in a mouse model of spontaneous bone metastasis, we found that a substantial number of genes suppressed in bone metastases are targets of the interferon regulatory factor Irf7. Restoration of Irf7 in tumor cells or administration of interferon led to reduced bone metastases and prolonged survival time. In mice deficient in the interferon (IFN) receptor or in natural killer (NK) and CD8+ T cell responses, metastasis was accelerated, indicating that Irf7-driven suppression of metastasis was reliant on IFN signaling to host immune cells. We confirmed the clinical relevance of these findings in over 800 patients in which high expression of Irf7-regulated genes in primary tumors was associated with prolonged bone metastasis–free survival. This gene signature may identify patients that could benefit from IFN-based therapies. Thus, we have identified an innate immune pathway intrinsic to breast cancer cells, the suppression of which restricts immunosurveillance to enable metastasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bone metastases derived from breast carcinomas downregulate interferon pathways and other immune-related genes.
Figure 2: Expression of the transcription factor Irf7 is suppressed in bone metastases.
Figure 3: Restoration of Irf7 expression enhances IFN signaling and inhibits metastasis.
Figure 4: Modulation of the immune system by metastatic tumor cells and reversion of these effects by enforced expression of the type I IFN pathway.
Figure 5: IRF7 expression in human breast cancer tissues.
Figure 6: The effect of type I IFN treatment on metastasis.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

NCBI Reference Sequence

References

  1. American Cancer Society. Breast Cancer Facts & Figures 2011–2012. <http://www.cancer.org/Research/CancerFactsFigures/BreastCancerFactsFigures/breast-cancer-facts-and-figures-2011-2012> (2012).

  2. Fehm, T. et al. Tumor cell dormancy: implications for the biology and treatment of breast cancer. APMIS 116, 742–753 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Eckhardt, B.L., Francis, P.A., Parker, B.S. & Anderson, R.L. Strategies for the discovery and development of therapies for metastatic breast cancer. Nat. Rev. Drug Discov. 11, 479–497 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Dunn, G.P., Bruce, A.T., Ikeda, H., Old, L.J. & Schreiber, R.D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Dunn, G.P. et al. A critical function for type I interferons in cancer immunoediting. Nat. Immunol. 6, 722–729 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Koebel, C.M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Schreiber, R.D., Old, L.J. & Smyth, M.J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Vesely, M.D., Kershaw, M.H., Schreiber, R.D. & Smyth, M.J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 29, 235–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Honda, K. et al. IRF-7 is the master regulator of type-I interferon–dependent immune responses. Nature 434, 772–777 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Wathelet, M.G. et al. Virus infection induces the assembly of coordinately activated transcription factors on the IFN-β enhancer in vivo. Mol. Cell 1, 507–518 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Darnell, J.E. Jr., Kerr, I.M. & Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Samarajiwa, S.A., Forster, S., Auchettl, K. & Hertzog, P.J. INTERFEROME: the database of interferon regulated genes. Nucleic Acids Res. 37, D852–D857 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Eckhardt, B.L. et al. Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Mol. Cancer Res. 3, 1–13 (2005).

    CAS  PubMed  Google Scholar 

  14. Lelekakis, M. et al. A novel orthotopic model of breast cancer metastasis to bone. Clin. Exp. Metastasis 17, 163–170 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Parker, B.S. et al. Primary tumour expression of the cysteine cathepsin inhibitor Stefin A inhibits distant metastasis in breast cancer. J. Pathol. 214, 337–346 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Culhane, A.C. et al. GeneSigDB—a curated database of gene expression signatures. Nucleic Acids Res. 38, D716–D725 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Lu, R., Au, W.C., Yeow, W.S., Hageman, N. & Pitha, P.M. Regulation of the promoter activity of interferon regulatory factor-7 gene. Activation by interferon snd silencing by hypermethylation. J. Biol. Chem. 275, 31805–31812 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Sheehan, K.C. et al. Blocking monoclonal antibodies specific for mouse IFN-α/β receptor subunit 1 (IFNAR-1) from mice immunized by in vivo hydrodynamic transfection. J. Interferon Cytokine Res. 26, 804–819 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Hwang, S.Y. et al. A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons α and β and alters macrophage responses. Proc. Natl. Acad. Sci. USA 92, 11284–11288 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang, L. et al. Abrogation of TGFβ signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13, 23–35 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. DuPre', S.A. & Hunter, K.W. Jr. Mouse mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors. Exp. Mol. Pathol. 82, 12–24 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Youn, J.I., Nagaraj, S., Collazo, M. & Gabrilovich, D.I. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 181, 5791–5802 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Waight, J.D., Hu, Q., Miller, A., Liu, S. & Abrams, S.I. Tumor-derived G-CSF facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell–dependent mechanism. PLoS ONE 6, e27690 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Adeegbe, D. et al. In vivo induction of myeloid suppressor cells and CD4+Foxp3+ T regulatory cells prolongs skin allograft survival in mice. Cell Transplant. 20, 941–954 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Hervas-Stubbs, S. et al. Direct effects of type I interferons on cells of the immune system. Clin. Cancer Res. 17, 2619–2627 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Wu, J.M. et al. Heterogeneity of breast cancer metastases: comparison of therapeutic target expression and promoter methylation between primary tumors and their multifocal metastases. Clin. Cancer Res. 14, 1938–1946 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Minn, A.J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harrell, J.C. et al. Genomic analysis identifies unique signatures predictive of brain, lung, and liver relapse. Breast Cancer Res. Treat. 132, 523–535 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Hayakawa, Y. & Smyth, M.J. CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J. Immunol. 176, 1517–1524 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Maher, S.G., Romero-Weaver, A.L., Scarzello, A.J. & Gamero, A.M. Interferon: cellular executioner or white knight? Curr. Med. Chem. 14, 1279–1289 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Noppert, S.J., Fitzgerald, K.A. & Hertzog, P.J. The role of type I interferons in TLR responses. Immunol. Cell Biol. 85, 446–457 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Swann, J.B. et al. Type I IFN contributes to NK cell homeostasis, activation, and antitumor function. J. Immunol. 178, 7540–7549 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Dunn, G.P., Koebel, C.M. & Schreiber, R.D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 6, 836–848 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Chin, A.I. et al. Toll-like receptor 3–mediated suppression of TRAMP prostate cancer shows the critical role of type I interferons in tumor immune surveillance. Cancer Res. 70, 2595–2603 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Savitsky, D., Tamura, T., Yanai, H. & Taniguchi, T. Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol. Immunother. 59, 489–510 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Coppin, C., Le, L., Porzsolt, F. & Wilt, T. Targeted therapy for advanced renal cell carcinoma. Cochrane Database Syst. Rev. CD006017 (2008).

  37. Garbe, C. et al. Evidence and interdisciplinary consensus-based German guidelines: surgical treatment and radiotherapy of melanoma. Melanoma Res. 18, 61–67 (2008).

    Article  PubMed  Google Scholar 

  38. Bi, X. et al. Loss of interferon regulatory factor 5 (IRF5) expression in human ductal carcinoma correlates with disease stage and contributes to metastasis. Breast Cancer Res. 13, R111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peranzoni, E. et al. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr. Opin. Immunol. 22, 238–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Ribechini, E., Greifenberg, V., Sandwick, S. & Lutz, M.B. Subsets, expansion and activation of myeloid-derived suppressor cells. Med. Microbiol. Immunol. 199, 273–281 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Vuk-Pavlovié, S. et al. Immunosuppressive CD14+HLA-DRlow/− monocytes in prostate cancer. Prostate 70, 443–455 (2010).

    Article  Google Scholar 

  42. Lin, E.Y., Nguyen, A.V., Russell, R.G. & Pollard, J.W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193, 727–740 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Melani, C., Chiodoni, C., Forni, G. & Colombo, M.P. Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102, 2138–2145 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Bunt, S.K., Sinha, P., Clements, V.K., Leips, J. & Ostrand-Rosenberg, S. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J. Immunol. 176, 284–290 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Penn, I. Tumors of the immunocompromised patient. Annu. Rev. Med. 39, 63–73 (1988).

    Article  CAS  PubMed  Google Scholar 

  46. Oruc, M.T., Soran, A., Jain, A.K., Wilson, J.W. & Fung, J. De novo breast cancer in patients with liver transplantation: University of Pittsburgh's experience and review of the literature. Liver Transpl. 10, 1–6 (2004).

    Article  PubMed  Google Scholar 

  47. DeNardo, D.G. et al. CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16, 91–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, Q., Zhang, X.H. & Massague, J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20, 538–549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Filipazzi, P. et al. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor–based antitumor vaccine. J. Clin. Oncol. 25, 2546–2553 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Diaz-Montero, C.M. et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol. Immunother. 58, 49–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. van 't Veer, L.J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Weigelt, B. et al. Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res. 65, 9155–9158 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Coleman, R.E. et al. Breast-cancer adjuvant therapy with zoledronic acid. N. Engl. J. Med. 365, 1396–1405 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Gnant, M. et al. Adjuvant endocrine therapy plus zoledronic acid in premenopausal women with early-stage breast cancer: 62-month follow-up from the ABCSG-12 randomised trial. Lancet Oncol. 12, 631–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Hu, Z. et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7, 96 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Repetto, L. et al. Tamoxifen and interferon-β for the treatment of metastatic breast cancer. Breast Cancer Res. Treat. 39, 235–238 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Hadden, J.W. The immunology and immunotherapy of breast cancer: an update. Int. J. Immunopharmacol. 21, 79–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Frith, M.C. et al. Detection of functional DNA motifs via statistical over-representation. Nucleic Acids Res. 32, 1372–1381 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Matys, V. et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Parker, B.S. et al. Alterations in vascular gene expression in invasive breast carcinoma. Cancer Res. 64, 7857–7866 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. St Croix, B. et al. Genes expressed in human tumor endothelium. Science 289, 1197–1202 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Haibe-Kains, B. et al. A three-gene model to robustly identify breast cancer molecular subtypes. J. Natl. Cancer Inst. 104, 311–325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cimino, A. et al. Epithelial cell adhesion molecule (EpCAM) is overexpressed in breast cancer metastases. Breast Cancer Res. Treat. 123, 701–708 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Wu, L., Patten, N., Yamashiro, C.T. & Chui, B. Extraction and amplification of DNA from formalin-fixed, paraffin-embedded tissues. Appl. Immunohistochem. Mol. Morphol. 10, 269–274 (2002).

    CAS  PubMed  Google Scholar 

  65. Mikeska, T., Felsberg, J., Hewitt, C.A. & Dobrovic, A. Analyzing DNA methylation using bisulfite pyrosequencing. Methods Mol. Biol. 791, 33–53 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Wojdacz, T.K. & Dobrovic, A. Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res. 35, e41 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cancer Council Victoria (B.S.P.), the Australian National Health and Medical Research Council (NHMRC) (P.J.H.), the Association of International Cancer Research (AICR) (A.M.), the Operational Infrastructure Scheme of the Victorian State government Department of Business and Innovation, the Australian Research Council (ARC) Centre for Structural and Functional Microbial Genomics and fellowship support for B.S.P. (NHMRC), R.L.A. (Australian National Breast Cancer Foundation, NBCF), A.M. (NBCF), C.Y.S. (NBCF, Cure Cancer Australia). We thank P. Hill (St Vincent's Pathology, St Vincent's Hospital, Fitzroy, Australia) for providing archived human breast cancer tissues assistance in the pathological assessment of immunohistochemistry staining and B. Haibe-Kains for assistance with codes in R. We also thank F. Miller (Karmanos Cancer Institute, Detroit, MI) for providing 66cl4 and 4T1 cell lines.

Author information

Authors and Affiliations

Authors

Contributions

B.N.B. and C.Y.S. generated the majority of data in the manuscript. N.P.W. and A.M. contributed to mouse experiments, including intramammary fatpad injections and mouse tissue harvests. Y.C., D.A. and N.E.M. carried out the fluorescence-activated cell sorting (FACS) analysis on immune populations. T.M. did the methylation-sensitive high-resolution melting (MS-HRM), S.F. (PhD student and graduate of computer science and genetics graduate, Monash University) and S.A.S. (bioinformatician) carried out the bioinformatics analysis of the mouse microarray experiments and promoter analyses. S.L., a clinician scientist with expertise in bioinformatics and biostatistics, carried out the prognostic analyses. P.A. is a pathologist who provided and scored the matched primary tumor and metastases tissue arrays. N.A.d.W. produced, purified and tested IFN-α1 for in vivo experiments. J.G. performed some microarray experiments. P.J.H. and B.S.P. were responsible for project design, interpretation of data and drafting the manuscript, in collaboration with R.L.A. and M.J.S.

Corresponding authors

Correspondence to Paul J Hertzog or Belinda S Parker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Tables 1–4 (PDF 6245 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bidwell, B., Slaney, C., Withana, N. et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med 18, 1224–1231 (2012). https://doi.org/10.1038/nm.2830

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2830

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer