Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin

Abstract

The obesity epidemic has led to an increased incidence of nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes. AMP-activated protein kinase (Ampk) regulates energy homeostasis and is activated by cellular stress, hormones and the widely prescribed type 2 diabetes drug metformin1,2. Ampk phosphorylates mouse acetyl-CoA carboxylase 1 (Acc1; refs. 3,4) at Ser79 and Acc2 at Ser212, inhibiting the conversion of acetyl-CoA to malonyl-CoA. The latter metabolite is a precursor in fatty acid synthesis5 and an allosteric inhibitor of fatty acid transport into mitochondria for oxidation6. To test the physiological impact of these phosphorylation events, we generated mice with alanine knock-in mutations in both Acc1 (at Ser79) and Acc2 (at Ser212) (Acc double knock-in, AccDKI). Compared to wild-type mice, these mice have elevated lipogenesis and lower fatty acid oxidation, which contribute to the progression of insulin resistance, glucose intolerance and NAFLD, but not obesity. Notably, AccDKI mice made obese by high-fat feeding are refractory to the lipid-lowering and insulin-sensitizing effects of metformin. These findings establish that inhibitory phosphorylation of Acc by Ampk is essential for the control of lipid metabolism and, in the setting of obesity, for metformin-induced improvements in insulin action.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Acc1 Ser79 and Acc2 Ser212 are essential for inhibiting enzyme activity and regulating liver fatty acid metabolism.
Figure 2: AccDKI mice fed a control diet are glucose intolerant and have hepatic insulin resistance.
Figure 3: Metformin improves hepatic lipid metabolism via inhibition of Acc.
Figure 4: HFD-fed AccDKI mice are insensitive to metformin-induced improvements in liver insulin sensitivity.

References

  1. Kahn, B.B., Alquier, T., Carling, D. & Hardie, D.G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Long, Y.C. & Zierath, J.R. AMP-activated protein kinase signaling in metabolic regulation. J. Clin. Invest. 116, 1776–1783 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carlson, C.A. & Kim, K.H. Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J. Biol. Chem. 248, 378–380 (1973).

    Article  CAS  PubMed  Google Scholar 

  4. Carling, D., Zammit, V.A. & Hardie, D.G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett. 223, 217–222 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Wakil, S.J., Stoops, J.K. & Joshi, V.C. Fatty acid synthesis and its regulation. Annu. Rev. Biochem. 52, 537–579 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. McGarry, J.D., Leatherman, G.F. & Foster, D.W. Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. J. Biol. Chem. 253, 4128–4136 (1978).

    Article  CAS  PubMed  Google Scholar 

  7. Harada, N. et al. Hepatic de novo lipogenesis is present in liver-specific ACC1-deficient mice. Mol. Cell Biol. 27, 1881–1888 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mao, J. et al. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc. Natl. Acad. Sci. USA 103, 8552–8557 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abu-Elheiga, L., Matzuk, M.M., Abo-Hashema, K.A. & Wakil, S.J. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291, 2613–2616 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Hoehn, K.L. et al. Acute or chronic upregulation of mitochondrial fatty acid oxidation has no net effect on whole-body energy expenditure or adiposity. Cell Metab. 11, 70–76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Olson, D.P., Pulinilkunnil, T., Cline, G.W., Shulman, G.I. & Lowell, B.B. Gene knockout of Acc2 has little effect on body weight, fat mass, or food intake. Proc. Natl. Acad. Sci. USA 107, 7598–7603 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi, C.S. et al. Continuous fat oxidation in acetyl-CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity. Proc. Natl. Acad. Sci. USA 104, 16480–16485 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Munday, M.R., Campbell, D.G., Carling, D. & Hardie, D.G. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur. J. Biochem. 175, 331–338 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Savage, D.B. et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J. Clin. Invest. 116, 817–824 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Erion, D.M. & Shulman, G.I. Diacylglycerol-mediated insulin resistance. Nat. Med. 16, 400–402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Samuel, V.T. et al. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J. Clin. Invest. 117, 739–745 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu, C. et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J. Biol. Chem. 277, 50230–50236 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Chibalin, A.V. et al. Downregulation of diacylglycerol kinase δ contributes to hyperglycemia-induced insulin resistance. Cell 132, 375–386 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. O'Neill, H.M. et al. AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc. Natl. Acad. Sci. USA 108, 16092–16097 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120, 2355–2369 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Viollet, B. et al. Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. (Lond.) 122, 253–270 (2012).

    Article  CAS  Google Scholar 

  23. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miller, R.A. et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494, 256–260 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Musso, G., Cassader, M., Rosina, F. & Gambino, R. Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials. Diabetologia 55, 885–904 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Bailey, C.J. & Mynett, K.J. Insulin requirement for the antihyperglycaemic effect of metformin. Br. J. Pharmacol. 111, 793–796 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bailey, C.J. & Turner, R.C. Metformin. N. Engl. J. Med. 334, 574–579 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Gómez-Sámano, M.Á. et al. Metformin and improvement of the hepatic insulin resistance index independent of anthropometric changes. Endocr. Pract. 18, 8–16 (2012).

    Article  PubMed  Google Scholar 

  29. Natali, A. & Ferrannini, E. Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review. Diabetologia 49, 434–441 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Cool, B. et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 3, 403–416 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Li, Y. et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13, 376–388 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Foretz, M., Carling, D., Guichard, C., Ferre, P. & Foufelle, F. AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J. Biol. Chem. 273, 14767–14771 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Lalau, J.D., Lemaire-Hurtel, A.S. & Lacroix, C. Establishment of a database of metformin plasma concentrations and erythrocyte levels in normal and emergency situations. Clin. Drug Investig. 31, 435–438 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Owen, M.R., Doran, E. & Halestrap, A.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348, 607–614 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilcock, C. & Bailey, C.J. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 24, 49–57 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Clark, J.M., Brancati, F.L. & Diehl, A.M. Nonalcoholic fatty liver disease. Gastroenterology 122, 1649–1657 (2002).

    Article  PubMed  Google Scholar 

  37. He, L. et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137, 635–646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Turban, S. et al. Defining the contribution of AMP-activated protein kinase (AMPK) and protein kinase C (PKC) in regulation of glucose uptake by metformin in skeletal muscle cells. J. Biol. Chem. 287, 20088–20099 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dzamko, N. et al. AMPK β1 deletion reduces appetite, preventing obesity and hepatic insulin resistance. J. Biol. Chem. 285, 115–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Steinberg, G.R. et al. Whole body deletion of AMP-activated protein kinase β2 reduces muscle AMPK activity and exercise capacity. J. Biol. Chem. 285, 37198–37209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ussher, J.R. et al. Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovasc. Res. 94, 359–369 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Galic, S. et al. Hematopoietic AMPK β1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J. Clin. Invest. 121, 4903–4915 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schertzer, J.D. et al. NOD1 activators link innate immunity to insulin resistance. Diabetes 60, 2206–2215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Steele, R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann. NY Acad. Sci. 82, 420–430 (1959).

    Article  CAS  PubMed  Google Scholar 

  45. Preiss, J. et al. Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras- and sis-transformed normal rat kidney cells. J. Biol. Chem. 261, 8597–8600 (1986).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Saab from the McMaster Centre for Translational Imaging for completing the computed tomography analysis and S. Stypa and E. Day for technical assistance. This study was supported by grants and fellowships from the Australian Research Council and the Commonwealth Scientific and Industrial Research Organisation (B.E.K.), the Australian National Health and Medical Research Council (B.E.K., B.J.v.D. and G.R.S.), the Canadian Diabetes Association (G.R.S., J.R.B.D. and J.D.S.) and the Canadian Institutes of Health Research (CIHR) (G.R.S. and J.R.B.D.) and was supported in part by the Victorian Government Operational Infrastructure Support Program (B.E.K.) and the Canadian Foundation for Innovation (G.R.S.). M.D.F. is supported by a CIHR Banting Postdoctoral Fellowship, J.D.S. is supported by a Canadian Diabetes Association Scholar Award and G.R.S. holds a Canada Research Chair in Metabolism and Obesity.

Author information

Authors and Affiliations

Authors

Contributions

M.D.F., S.G., B.E.K. and G.R.S. designed the study. M.D.F., S.G., K.M., S.S., R.J.F. and R.P. performed in vivo experiments. M.D.F., S.G. and J.D.S. performed primary hepatocyte experiments. S.G., Z.-P.C. performed Acc activity assays and M.O. performed mass spectrometry experiments. H.M.O. performed fatty acid oxidation in isolated skeletal muscle. T.P. and J.R.B.D. measured tissue malonyl-CoA content. D.G.H. contributed Acc antibodies for activity assays and helpful comments regarding the manuscript. B.J.v.D., S.L.M., B.E.K. and G.R.S. were involved in generating the knock-in mice. M.D.F. and G.R.S. wrote the manuscript.

Corresponding author

Correspondence to Gregory R Steinberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1-8 (PDF 789 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fullerton, M., Galic, S., Marcinko, K. et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med 19, 1649–1654 (2013). https://doi.org/10.1038/nm.3372

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3372

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing