Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression

Abstract

Hypertension and chronic kidney disease (CKD) are complex traits representing major global health problems1,2. Multiple genome-wide association studies have identified common variants in the promoter of the UMOD gene3,4,5,6,7,8,9, which encodes uromodulin, the major protein secreted in normal urine, that cause independent susceptibility to CKD and hypertension. Despite compelling genetic evidence for the association between UMOD risk variants and disease susceptibility in the general population, the underlying biological mechanism is not understood. Here, we demonstrate that UMOD risk variants increased UMOD expression in vitro and in vivo. Uromodulin overexpression in transgenic mice led to salt-sensitive hypertension and to the presence of age-dependent renal lesions similar to those observed in elderly individuals homozygous for UMOD promoter risk variants. The link between uromodulin and hypertension is due to activation of the renal sodium cotransporter NKCC2. We demonstrated the relevance of this mechanism in humans by showing that pharmacological inhibition of NKCC2 was more effective in lowering blood pressure in hypertensive patients who are homozygous for UMOD promoter risk variants than in other hypertensive patients. Our findings link genetic susceptibility to hypertension and CKD to the level of uromodulin expression and uromodulin's effect on salt reabsorption in the kidney. These findings point to uromodulin as a therapeutic target for lowering blood pressure and preserving renal function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of UMOD SNP variants on uromodulin expression.
Figure 2: Uromodulin overexpression leads to hypertension and renal damage.
Figure 3: Increased activation of Nkcc2 co-transporter and Spak kinase in TgUmodwt/wt mice.
Figure 4: Increased blood pressure and response to furosemide in hypertensive patients homozygous for UMOD risk variants.

Similar content being viewed by others

References

  1. Kearney, P.M. et al. Global burden of hypertension: analysis of worldwide data. Lancet 365, 217–223 (2005).

    PubMed  Google Scholar 

  2. Levey, A.S. et al. Chronic kidney disease as a global public health problem: approaches and initiatives–a position statement from Kidney Disease Improving Global Outcomes. Kidney Int. 72, 247–259 (2007).

    CAS  PubMed  Google Scholar 

  3. Padmanabhan, S. et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 6, e1001177 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. Köttgen, A. et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 41, 712–717 (2009).

    PubMed  PubMed Central  Google Scholar 

  5. Köttgen, A. et al. New loci associated with kidney function and chronic kidney disease. Nat. Genet. 42, 376–384 (2010).

    PubMed  PubMed Central  Google Scholar 

  6. Pattaro, C. et al. A meta-analysis of genome-wide data from five European isolates reveals an association of COL22A1, SYT1, and GABRR2 with serum creatinine level. BMC Med. Genet. 11, 41 (2010).

    PubMed  PubMed Central  Google Scholar 

  7. Gudbjartsson, D.F. et al. Association of variants at UMOD with chronic kidney disease and kidney stones-role of age and comorbid diseases. PLoS Genet. 6, e1001039 (2010).

    PubMed  PubMed Central  Google Scholar 

  8. Böger, C.A. et al. Association of eGFR-related loci identified by GWAS with incident CKD and ESRD. PLoS Genet. 7, e1002292 (2011).

    PubMed  PubMed Central  Google Scholar 

  9. Pattaro, C. et al. Genome-wide association and functional follow-up reveals new loci for kidney function. PLoS Genet. 8, e1002584 (2012).

    PubMed  PubMed Central  Google Scholar 

  10. Lifton, R.P., Gharavi, A.G. & Geller, D.S. Molecular mechanisms of human hypertension. Cell 104, 545–556 (2001).

    CAS  PubMed  Google Scholar 

  11. Boyden, L.M. et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482, 98–102 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Eckardt, K.U. et al. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet 382, 158–169 (2013).

    PubMed  Google Scholar 

  13. O'Seaghdha, C.M. & Fox, C.S. Genome-wide association studies of chronic kidney disease: what have we learned? Nat. Rev. Nephrol. 8, 89–99 (2012).

    CAS  Google Scholar 

  14. Padmanabhan, S., Newton-Cheh, C. & Dominiczak, A.F. Genetic basis of blood pressure and hypertension. Trends Genet. 28, 397–408 (2012).

    CAS  PubMed  Google Scholar 

  15. Rampoldi, L., Scolari, F., Amoroso, A., Ghiggeri, G. & Devuyst, O. The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. Kidney Int. 80, 338–347 (2011).

    CAS  PubMed  Google Scholar 

  16. Bates, J.M. et al. Tamm-Horsfall protein knockout mice are more prone to urinary tract infection: rapid communication. Kidney Int. 65, 791–797 (2004).

    CAS  PubMed  Google Scholar 

  17. Liu, Y. et al. Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm-Horsfall protein. Am. J. Physiol. Renal Physiol. 299, F469–F478 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. Bachmann, S. et al. Renal effects of Tamm-Horsfall protein (uromodulin) deficiency in mice. Am. J. Physiol. Renal Physiol. 288, F559–F567 (2005).

    CAS  PubMed  Google Scholar 

  19. Mutig, K. et al. Activation of the bumetanide-sensitive Na+,K+,2Cl cotransporter (NKCC2) is facilitated by Tamm-Horsfall protein in a chloride-sensitive manner. J. Biol. Chem. 286, 30200–30210 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Renigunta, A. et al. Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function. J. Biol. Chem. 286, 2224–2235 (2011).

    CAS  PubMed  Google Scholar 

  21. Hart, T.C. et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J. Med. Genet. 39, 882–892 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Eddy, A.A. Scraping fibrosis: UMODulating renal fibrosis. Nat. Med. 17, 553–555 (2011).

    CAS  PubMed  Google Scholar 

  23. Bernascone, I. et al. A transgenic mouse model for uromodulin-associated kidney diseases shows specific tubulo-interstitial damage, urinary concentrating defect and renal failure. Hum. Mol. Genet. 19, 2998–3010 (2010).

    CAS  PubMed  Google Scholar 

  24. Simpson, R.U., Hershey, S.H. & Nibbelink, K.A. Characterization of heart size and blood pressure in the vitamin D receptor knockout mouse. J. Steroid Biochem. Mol. Biol. 103, 521–524 (2007).

    CAS  PubMed  Google Scholar 

  25. Han, J. et al. Age-related changes in blood pressure in the senescence-accelerated mouse (SAM): aged SAMP1 mice manifest hypertensive vascular disease. Lab. Anim. Sci. 48, 256–263 (1998).

    CAS  PubMed  Google Scholar 

  26. Schreiber, A. et al. Transcutaneous measurement of renal function in conscious mice. Am. J. Physiol. Renal Physiol. 303, F783–F788 (2012).

    CAS  PubMed  Google Scholar 

  27. Giménez, I. & Forbush, B. Regulatory phosphorylation sites in the NH2 terminus of the renal Na-K-Cl cotransporter (NKCC2). Am. J. Physiol. Renal Physiol. 289, F1341–F1345 (2005).

    PubMed  Google Scholar 

  28. Ponce-Coria, J. et al. Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases. Proc. Natl. Acad. Sci. USA 105, 8458–8463 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Schaeffer, C., Santambrogio, S., Perucca, S., Casari, G. & Rampoldi, L. Analysis of uromodulin polymerization provides new insights into the mechanisms regulating ZP domain-mediated protein assembly. Mol. Biol. Cell 20, 589–599 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Piechotta, K., Lu, J. & Delpire, E. Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J. Biol. Chem. 277, 50812–50819 (2002).

    CAS  PubMed  Google Scholar 

  31. Richardson, C. et al. Regulation of the NKCC2 ion cotransporter by SPAK-OSR1-dependent and -independent pathways. J. Cell Sci. 124, 789–800 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. McCormick, J.A. et al. A SPAK isoform switch modulates renal salt transport and blood pressure. Cell Metab. 14, 352–364 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Devuyst, O. Salt wasting and blood pressure. Nat. Genet. 40, 495–496 (2008).

    CAS  PubMed  Google Scholar 

  34. Ying, W.Z. & Sanders, P.W. Dietary salt regulates expression of Tamm-Horsfall glycoprotein in rats. Kidney Int. 54, 1150–1156 (1998).

    CAS  PubMed  Google Scholar 

  35. Torffvit, O., Melander, O. & Hulten, U.L. Urinary excretion rate of Tamm-Horsfall protein is related to salt intake in humans. Nephron Physiol. 97, 31–36 (2004).

    Google Scholar 

  36. Stubbe, J., Madsen, K., Nielsen, F.T., Skott, O. & Jensen, B.L. Glucocorticoid impairs growth of kidney outer medulla and accelerates loop of Henle differentiation and urinary concentrating capacity in rat kidney development. Am. J. Physiol. Renal Physiol. 291, F812–F822 (2006).

    CAS  PubMed  Google Scholar 

  37. Ferrandi, M. et al. α- and β-adducin polymorphisms affect podocyte proteins and proteinuria in rodents and decline of renal function in human IgA nephropathy. J. Mol. Med. 88, 203–217 (2010).

    CAS  PubMed  Google Scholar 

  38. Mulder, W.J. & Hillen, H.F. Renal function and renal disease in the elderly: Part I. Eur. J. Intern. Med. 12, 86–97 (2001).

    PubMed  Google Scholar 

  39. Chen, G. et al. Increased susceptibility of aging kidney to ischemic injury: identification of candidate genes changed during aging, but corrected by caloric restriction. Am. J. Physiol. Renal Physiol. 293, F1272–F1281 (2007).

    CAS  PubMed  Google Scholar 

  40. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Manunta, P. et al. Physiological interaction between α-adducin and WNK1-NEDD4L pathways on sodium-related blood pressure regulation. Hypertension 52, 366–372 (2008).

    CAS  PubMed  Google Scholar 

  42. Pruijm, M. et al. Heritability, determinants and reference values of renal length: a family-based population study. Eur. Radiol. 23, 2899–2905 (2013).

    PubMed  Google Scholar 

  43. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am. J. Kidney Dis. 39, S1–S266 (2002).

  44. Youhanna, S. et al. Determination of uromodulin in human urine: influence of storage and processing. Nephrol. Dial. Transplant. 10.1093/ndt/gft345 (3 October 2013).

  45. Dahan, K. et al. A cluster of mutations in the UMOD gene causes familial juvenile hyperuricemic nephropathy with abnormal expression of uromodulin. J. Am. Soc. Nephrol. 14, 2883–2893 (2003).

    CAS  PubMed  Google Scholar 

  46. Barr, D.B. et al. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ. Health Perspect. 113, 192–200 (2005).

    CAS  PubMed  Google Scholar 

  47. Bourgeois, S. et al. Differentiated thick ascending limb (TAL) cultured cells derived from SV40 transgenic mice express functional apical NHE2 isoform: effect of nitric oxide. Pflugers Arch. 446, 672–683 (2003).

    CAS  PubMed  Google Scholar 

  48. Terryn, S. A primary culture of mouse proximal tubular cells, established on collagen-coated membranes. Am. J. Physiol. Renal Physiol. 293, F476–F485 (2007).

    CAS  PubMed  Google Scholar 

  49. Glaudemans, B. et al. A primary culture system of mouse thick ascending limb cells with preserved function and uromodulin processing. Pflugers Arch. 10.1007/s00424-013-1321-1 (26 July 2013).

  50. Zaarour, N., Demaretz, S., Defontaine, N., Mordasini, D. & Laghmani, K. A highly conserved motif at the COOH terminus dictates endoplasmic reticulum exit and cell surface expression of NKCC2. J. Biol. Chem. 284, 21752–21764 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000).

    CAS  PubMed  Google Scholar 

  52. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hummon, A.B., Lim, S.R., Difilippantonio, M.J. & Ried, T. Isolation and solubilization of proteins after TRIzol extraction of RNA and DNA from patient material following prolonged storage. Biotechniques 42, 467–470, 472 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sorensen, M.V. et al. Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney Int. 83, 811–824 (2013).

    CAS  PubMed  Google Scholar 

  55. Flemmer, A.W., Gimenez, I., Dowd, B.F.X., Darman, R.B. & Forbush, B. Activation of the Na-K-Cl cotransporter NKCC1 detected with a phospho-specific antibody. J. Biol. Chem. 277, 37551–37558 (2002).

    CAS  PubMed  Google Scholar 

  56. Rafiqi, F.H. et al. Role of the WNK-activated SPAK kinase in regulating blood pressure. EMBO Mol. Med. 2, 63–75 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wagner, C.A. et al. Mouse model of type II Bartter's syndrome. II. Altered expression of renal sodium- and water-transporting proteins. Am. J. Physiol. Renal Physiol. 294, F1373–F1380 (2008).

    CAS  PubMed  Google Scholar 

  58. Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M. & Barton, G.J. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Azizi, A. Blanchard, G. Capasso, M. Carrel, Y. Cnops, A. Creatore, S. Delli Carpini, P. Houillier, X. Jeunemaitre, R. Latini, N. Morel, S. Terryn and S. Youhanna for help, technical assistance and fruitful discussions. We are grateful to S. Bourgeois (University of Zurich) for providing MKTAL cells, to D. Alessi (University of Dundee) for antibodies to SPAK and phospho-SPAK/OSR1, to B. Forbush (Yale University) for antibody to phospho-NKCC2 and to D. Schock-Kusch and N. Gretz (University of Heidelberg) for FITC-sinistrin clearance reagents and technical assistance. This work was supported by Telethon-Italy (TCR08006), the Italian Ministry of Health (grant RF-2010-2319394), Associazione per il Bambino Nefropatico, the Belgian Fonds National de la Recherche Scientifique and Fonds pour la Recherche Scientifique Médicale, a Concerted Research Action (10/15-029), an Interuniversity Attraction Pole program initiated by the Belgian Science Policy Office, the Gebert Rüf Stiftung (Project GRS-038/12), the National Centre of Competence in Research Kidney. CH (Swiss National Science Foundation), the Swiss National Science Foundation project grant 310030_146490 and the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement 246539 (Marie Curie) and grant 305608 (EURenOmics). The SKIPOGH project is funded by the Swiss National Science Foundation (33CM30-124087/1 and 33CM30_140331). L.R. is an Associate Telethon Scientist.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

M.T. and S.J. characterized the mouse model and carried out immunofluorescence and immunoblot analyses on mouse tissue; J.L. carried out expression studies for salt transporters; M.T. and C.S. performed RNA extraction and qRT-PCR analysis on mouse and human kidneys; M.T., S.J. and G.R. performed blood pressure measurements; S.J. and H.D. carried out plasma and urine analyses on mice; L.R., H.D. and M.T. did bioinformatics analysis; H.D. carried out in vitro analysis on the UMOD promoter; B.G. performed studies based on primary TAL cells. The SKIPOGH investigators provided the population-based cohort used for urinary uromodulin determination (H.D. and O.D.); P.M., C.L. and F.T. contributed to the hypertensive patient (MI_HPT) cohort patient recruitment and assessment; P.M. and C.L. designed and performed the study on human hypertensive patients; L.C. performed DNA extraction and genotyping on human samples; K.L. contributed in designing the in vitro experiments on Nkcc2 phosphorylation and activity that were performed by S.D.; G.D.A. and M.P.R. supervised the histology work on mouse and human kidneys; G.D.A., M.P.R. and M.I. carried out histological assessment; M.T. and M.I. performed histological and immunohistochemistry staining; L.R. and O.D. designed the study and supervised the experiments; L.R., O.D. and M.T. wrote the manuscript. All authors critically reviewed and approved the manuscript.

Corresponding authors

Correspondence to Olivier Devuyst or Luca Rampoldi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trudu, M., Janas, S., Lanzani, C. et al. Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat Med 19, 1655–1660 (2013). https://doi.org/10.1038/nm.3384

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3384

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing