Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity

Abstract

Genetic mutations in TAR DNA-binding protein 43 (TARDBP, also known as TDP-43) cause amyotrophic lateral sclerosis (ALS), and an increase in the presence of TDP-43 (encoded by TARDBP) in the cytoplasm is a prominent histopathological feature of degenerating neurons in various neurodegenerative diseases. However, the molecular mechanisms by which TDP-43 contributes to ALS pathophysiology remain elusive. Here we have found that TDP-43 accumulates in the mitochondria of neurons in subjects with ALS or frontotemporal dementia (FTD). Disease-associated mutations increase TDP-43 mitochondrial localization. In mitochondria, wild-type (WT) and mutant TDP-43 preferentially bind mitochondria-transcribed messenger RNAs (mRNAs) encoding respiratory complex I subunits ND3 and ND6, impair their expression and specifically cause complex I disassembly. The suppression of TDP-43 mitochondrial localization abolishes WT and mutant TDP-43-induced mitochondrial dysfunction and neuronal loss, and improves phenotypes of transgenic mutant TDP-43 mice. Thus, our studies link TDP-43 toxicity directly to mitochondrial bioenergetics and propose the targeting of TDP-43 mitochondrial localization as a promising therapeutic approach for neurodegeneration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TDP-43 co-localizes with and accumulates in mitochondria in individuals with ALS and FTD.
Figure 2: ALS-associated genetic mutations in TDP-43 increase its import into mitochondria.
Figure 3: TDP-43 mitochondrial import depends on internal M1, M3 and M5 motifs.
Figure 4: TDP-43 preferentially binds mitochondria-transcribed ND3 and ND6 mRNAs and inhibits their translation.
Figure 5: TDP-43 specifically reduces complex I assembly and impairs mitochondrial function and morphology.
Figure 6: Suppression of TDP-43 mitochondrial localization abolishes TDP-43 neurotoxicity.

Similar content being viewed by others

References

  1. Swinnen, B. & Robberecht, W. The phenotypic variability of amyotrophic lateral sclerosis. Nat. Rev. Neurol. 10, 661–670 (2014).

    Article  PubMed  Google Scholar 

  2. Rademakers, R., Neumann, M. & Mackenzie, I.R. Advances in understanding the molecular basis of frontotemporal dementia. Nat. Rev. Neurol. 8, 423–434 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cléry, A., Blatter, M. & Allain, F.H. RNA recognition motifs: boring? Not quite. Curr. Opin. Struct. Biol. 18, 290–298 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Buratti, E. & Baralle, F.E. Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front. Biosci. 13, 867–878 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Buratti, E. & Baralle, F.E. TDP-43: gumming up neurons through protein-protein and protein-RNA interactions. Trends Biochem. Sci. 37, 237–247 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, E.B., Lee, V.M. & Trojanowski, J.Q. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat. Rev. Neurosci. 13, 38–50 (2012).

    Article  CAS  Google Scholar 

  7. Kabashi, E. et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat. Genet. 40, 572–574 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Mackenzie, I.R., Rademakers, R. & Neumann, M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 9, 995–1007 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Amador-Ortiz, C. et al. TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease. Ann. Neurol. 61, 435–445 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Josephs, K.A. et al. Staging TDP-43 pathology in Alzheimer's disease. Acta Neuropathol. 127, 441–450 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Chanson, J.B. et al. TDP43-positive intraneuronal inclusions in a patient with motor neuron disease and Parkinson's disease. Neurodegener. Dis. 7, 260–264 (2010).

    Article  PubMed  Google Scholar 

  14. Davidson, Y. et al. TDP-43 in ubiquitinated inclusions in the inferior olives in frontotemporal lobar degeneration and in other neurodegenerative diseases: a degenerative process distinct from normal ageing. Acta Neuropathol. 118, 359–369 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Arnold, E.S. et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc. Natl. Acad. Sci. USA 110, E736–E745 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Austin, J.A. et al. Disease causing mutants of TDP-43 nucleic acid binding domains are resistant to aggregation and have increased stability and half-life. Proc. Natl. Acad. Sci. USA 111, 4309–4314 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barmada, S.J. et al. Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J. Neurosci. 30, 639–649 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hansson Petersen, C.A. et al. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc. Natl. Acad. Sci. USA 105, 13145–13150 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Emanuelsson, O., Brunak, S., von Heijne, G. & Nielsen, H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2, 953–971 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Claros, M.G. & Vincens, P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem. 241, 779–786 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Bolender, N., Sickmann, A., Wagner, R., Meisinger, C. & Pfanner, N. Multiple pathways for sorting mitochondrial precursor proteins. EMBO Rep. 9, 42–49 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmidt, O., Pfanner, N. & Meisinger, C. Mitochondrial protein import: from proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 11, 655–667 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Sillerud, L.O. & Larson, R.S. Design and structure of peptide and peptidomimetic antagonists of protein-protein interaction. Curr. Protein Pept. Sci. 6, 151–169 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Herdewyn, S. et al. Prevention of intestinal obstruction reveals progressive neurodegeneration in mutant TDP-43 (A315T) mice. Mol. Neurodegener. 9, 24 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hatzipetros, T. et al. C57BL/6J congenic Prp-TDP43A315T mice develop progressive neurodegeneration in the myenteric plexus of the colon without exhibiting key features of ALS. Brain Res. 1584, 59–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Dang, T.N. et al. Increased metal content in the TDP-43(A315T) transgenic mouse model of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Front. Aging Neurosci. 6, 15 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dang, T.N. et al. Endogenous progesterone levels and frontotemporal dementia: modulation of TDP-43 and Tau levels in vitro and treatment of the A315T TARDBP mouse model. Dis. Model. Mech. 6, 1198–1204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wegorzewska, I., Bell, S., Cairns, N.J., Miller, T.M. & Baloh, R.H. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc. Natl. Acad. Sci. USA 106, 18809–18814 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mori, F. et al. Maturation process of TDP-43-positive neuronal cytoplasmic inclusions in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol. 116, 193–203 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Hasegawa, M. et al. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann. Neurol. 64, 60–70 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brandmeir, N.J. et al. Severe subcortical TDP-43 pathology in sporadic frontotemporal lobar degeneration with motor neuron disease. Acta Neuropathol. 115, 123–131 (2008).

    Article  PubMed  Google Scholar 

  32. Yang, C. et al. Partial loss of TDP-43 function causes phenotypes of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 111, E1121–E1129 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu, L.S., Cheng, W.C. & Shen, C.K. Targeted depletion of TDP-43 expression in the spinal cord motor neurons leads to the development of amyotrophic lateral sclerosis-like phenotypes in mice. J. Biol. Chem. 287, 27335–27344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pfeffer, S., Woellhaf, M.W., Herrmann, J.M. & Förster, F. Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Nat. Commun. 6, 6019 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 14, 459–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sephton, C.F. et al. Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes. J. Biol. Chem. 286, 1204–1215 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Tollervey, J.R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 14, 452–458 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Narayanan, R.K. et al. Identification of RNA bound to the TDP-43 ribonucleoprotein complex in the adult mouse brain. Amyotroph. Lateral Scler. Frontotemporal Degener. 14, 252–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. McFarland, R. et al. De novo mutations in the mitochondrial ND3 gene as a cause of infantile mitochondrial encephalopathy and complex I deficiency. Ann. Neurol. 55, 58–64 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Chinnery, P.F. et al. The mitochondrial ND6 gene is a hot spot for mutations that cause Leber's hereditary optic neuropathy. J. Neurol. 124, 209–218 (2001).

    CAS  Google Scholar 

  41. Liu, W. et al. Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission. Proc. Natl. Acad. Sci. USA 108, 12920–12924 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cogliati, S. et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155, 160–171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu, Y.F. et al. Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J. Neurosci. 30, 10851–10859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu, Y.F. et al. Expression of mutant TDP-43 induces neuronal dysfunction in transgenic mice. Mol. Neurodegener. 6, 73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Magrane, J., Cortez, C., Gan, W.B. & Manfredi, G. Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum. Mol. Genet. 23, 1413–1424 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, W. et al. The ALS disease-associated mutant TDP-43 impairs mitochondrial dynamics and function in motor neurons. Hum. Mol. Genet. 22, 4706–4719 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kroemer, G., Dallaporta, B. & Resche-Rigon, M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619–642 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Galluzzi, L. & Kroemer, G. Necroptosis: a specialized pathway of programmed necrosis. Cell 135, 1161–1163 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Dolmetsch, R. & Geschwind, D.H. The human brain in a dish: the promise of iPSC-derived neurons. Cell 145, 831–834 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miller, J.D. et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691–705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu, X. et al. Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J. Neuropathol. Exp. Neurol. 59, 880–888 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Kaech, S. & Banker, G. Culturing hippocampal neurons. Nat. Protoc. 1, 2406–2415 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, X., Su, B., Fujioka, H. & Zhu, X. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer's disease patients. Am. J. Pathol. 173, 470–482 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lu, J. et al. The distribution of genomic variations in human iPSCs is related to replication-timing reorganization during reprogramming. Cell Rep. 7, 70–78 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Choi, S.W., Gerencser, A.A. & Nicholls, D.G. Bioenergetic analysis of isolated cerebrocortical nerve terminals on a microgram scale: spare respiratory capacity and stochastic mitochondrial failure. J. Neurochem. 109, 1179–1191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, X. et al. Impaired balance of mitochondrial fission and fusion in Alzheimer's disease. J. Neurosci. 29, 9090–9103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kirby, D.M., Thorburn, D.R., Turnbull, D.M. & Taylor, R.W. Biochemical assays of respiratory chain complex activity. Methods Cell Biol. 80, 93–119 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Jones, B.J. & Roberts, D.J. A rotarod suitable for quantitative measurements of motor incoordination in naive mice. Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmakol. 259, 211 (1968).

    Article  CAS  PubMed  Google Scholar 

  59. Fujioka, H. et al. Decreased cytochrome c oxidase subunit VIIa in aged rat heart mitochondria: immunocytochemistry. Anat Rec (Hoboken) 294, 1825–1833 (2011).

    Article  CAS  Google Scholar 

  60. Hanaichi, T. et al. A stable lead by modification of Sato's method. J. Electron Microsc. (Tokyo) 35, 304–306 (1986).

    CAS  Google Scholar 

  61. Fujioka, H., Tandler, B. & Hoppel, C.L. Mitochondrial division in rat cardiomyocytes: an electron microscope study. Anat Rec (Hoboken) 295, 1455–1461 (2012).

    Article  Google Scholar 

  62. Wang, X. et al. Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc. Natl. Acad. Sci. USA 105, 19318–19323 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is supported by grants from the US National Institutes of Health (R03AG044680 and 1R01NS089604 to X.W.), the US Alzheimer's Association (2014-NIRG-301299 to X.W.) and the University Hospitals of Cleveland, USA (2012 SPITZ Innovation Pilot Grant to X.W.). Human spinal cord frozen tissues were obtained from the Eunice Kennedy Shriver National Institute of Child Health and Human Development Brain and Tissue Bank for Developmental Disorders at the University of Maryland, Baltimore, Maryland, USA, contract HHSN275200900011C, ref. no. N01-HD-9-0011. We also thank G. Perry and X. Zhu for providing paraffin-embedded human spinal cord tissues.

Author information

Authors and Affiliations

Authors

Contributions

X.W. conceived and directed the project, interpreted results and wrote the manuscript. W.W., L.W., J.L., S.L.S., J.L., S.J., X.M., Z.J., M.S., H.C. and X.W. contributed to experiments, data analysis and manuscript preparation. H.F. contributed to electron microscopy study. E.L.D.R. and H.L. contributed to RNA-seq study. P.H.L. contributed to the reprogramming of human fibroblasts into human neurons.

Corresponding author

Correspondence to Xinglong Wang.

Ethics declarations

Competing interests

X.W. has a patent pending regarding peptides inhibiting TDP-43 mitochondrial localization.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Tables 1–3 (PDF 19349 kb)

Supplementary Video 1

Representative movie of NTG mice treated with cPM. (AVI 14378 kb)

Supplementary Video 2

Representative movie of TG mice treated with cPM. (AVI 9077 kb)

Supplementary Video 3

Representative movie of TG mice treated with PM1. (AVI 25014 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, L., Lu, J. et al. The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat Med 22, 869–878 (2016). https://doi.org/10.1038/nm.4130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing