Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nitric oxide mediates aortic disease in mice deficient in the metalloprotease Adamts1 and in a mouse model of Marfan syndrome

Abstract

Heritable thoracic aortic aneurysms and dissections (TAAD), including Marfan syndrome (MFS), currently lack a cure, and causative mutations have been identified for only a fraction of affected families. Here we identify the metalloproteinase ADAMTS1 and inducible nitric oxide synthase (NOS2) as therapeutic targets in individuals with TAAD. We show that Adamts1 is a major mediator of vascular homeostasis, given that genetic haploinsufficiency of Adamts1 in mice causes TAAD similar to MFS. Aortic nitric oxide and Nos2 levels were higher in Adamts1-deficient mice and in a mouse model of MFS (hereafter referred to as MFS mice), and Nos2 inactivation protected both types of mice from aortic pathology. Pharmacological inhibition of Nos2 rapidly reversed aortic dilation and medial degeneration in young Adamts1-deficient mice and in young or old MFS mice. Patients with MFS showed elevated NOS2 and decreased ADAMTS1 protein levels in the aorta. These findings uncover a possible causative role for the ADAMTS1–NOS2 axis in human TAAD and warrant evaluation of NOS2 inhibitors for therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of syndromic TAA by Adamts1 deficiency.
Figure 2: Knockdown of Adamts1 expression in the aorta of adult mice causes an aortic disease similar to that induced by genetic deficiency of Adamts1.
Figure 3: Knockdown of Adamts1 rapidly induces aortic dilation, hypotension and medial degeneration independently of TGF-β activation.
Figure 4: The aortopathy induced by Adamts1 deficiency is mediated by NO.
Figure 5: Nos2 is a critical mediator of the aortopathy induced by Adamts1 deficiency.
Figure 6: Adamts1 and NO have critical roles in Marfan syndrome.

Similar content being viewed by others

References

  1. Dietz, H.C. TGF-β in the pathogenesis and prevention of disease: a matter of aneurysmic proportions. J. Clin. Invest. 120, 403–407 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gallo, E.M. et al. Angiotensin-II-dependent TGF-β signaling contributes to Loeys–Dietz syndrome vascular pathogenesis. J. Clin. Invest. 124, 448–460 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Renard, M. et al. Novel MYH11 and ACTA2 mutations reveal a role for enhanced TGF-β signaling in FTAAD. Int. J. Cardiol. 165, 314–321 (2013).

    Article  PubMed  Google Scholar 

  4. Gillis, E., Van Laer, L. & Loeys, B.L. Genetics of thoracic aortic aneurysm: at the crossroad of transforming-growth-factor-β signaling and vascular smooth muscle cell contractility. Circ. Res. 113, 327–340 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Habashi, J.P. et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312, 117–121 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lim, D.S. et al. Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation 103, 789–791 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Forteza, A. et al. Efficacy of losartan versus atenolol for the prevention of aortic dilation in Marfan syndrome: a randomized clinical trial. Eur. Heart J. 37, 978–985 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Lacro, R.V. et al. Atenolol versus losartan in children and young adults with Marfan's syndrome. N. Engl. J. Med. 371, 2061–2071 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Milleron, O. et al. Marfan Sartan: a randomized, double-blind, placebo-controlled trial. Eur. Heart J. 36, 2160–2166 (2015).

    Article  PubMed  Google Scholar 

  10. Oller, J. et al. C/EBP-β and nuclear factor of activated T cells differentially regulate Adamts1 induction by stimuli associated with vascular remodeling. Mol. Cell. Biol. 35, 3409–3422 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Luque, A., Carpizo, D.R. & Iruela-Arispe, M.L. ADAMTS1 (METH1) inhibits endothelial cell proliferation by direct binding and sequestration of VEGF165. J. Biol. Chem. 278, 23656–23665 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Thai, S.N. & Iruela-Arispe, M.L. Expression of ADAMTS1 during murine development. Mech. Dev. 115, 181–185 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Ren, P. et al. ADAMTS1 and ADAMTS4 levels are elevated in thoracic aortic aneurysms and dissections. Ann. Thorac. Surg. 95, 570–577 (2013).

    Article  PubMed  Google Scholar 

  14. Sandy, J.D. et al. Versican V1 proteolysis in human aorta in vivo occurs at the Glu441–Ala442 bond, a site that is cleaved by recombinant ADAMTS1 and ADAMTS4. J. Biol. Chem. 276, 13372–13378 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Mittaz, L. et al. Adamts1 is essential for the development and function of the urogenital system. Biol. Reprod. 70, 1096–1105 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Cohn, R.D. et al. Angiotensin II type 1 receptor blockade attenuates TGF-β-induced failure of muscle regeneration in multiple myopathic states. Nat. Med. 13, 204–210 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Neptune, E.R. et al. Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 33, 407–411 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Pereira, L. et al. Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin 1. Proc. Natl. Acad. Sci. USA 96, 3819–3823 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pyeritz, R.E. The Marfan syndrome. Annu. Rev. Med. 51, 481–510 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Esteban, V. et al. Regulator of calcineurin 1 mediates pathological vascular wall remodeling. J. Exp. Med. 208, 2125–2139 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Loeys, B.L. et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat. Genet. 37, 275–281 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Wu, Z., Ruan, Y., Chang, J., Li, B. & Ren, W. Angiotensin II is related to the acute aortic dissection complicated with lung injury through mediating the release of MMP9 from macrophages. Am. J. Transl. Res. 8, 1426–1436 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Méndez-Barbero, N. et al. A major role for RCAN1 in atherosclerosis progression. EMBO Mol. Med. 5, 1901–1917 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Förstermann, U. & Sessa, W.C. Nitric oxide synthases: regulation and function. Eur. Heart J. 33, 829–837 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Albrecht, E.W., Stegeman, C.A., Heeringa, P., Henning, R.H. & van Goor, H. Protective role of endothelial nitric oxide synthase. J. Pathol. 199, 8–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Pfeilschifter, J., Eberhardt, W. & Beck, K.F. Regulation of gene expression by nitric oxide. Pflugers Arch. 442, 479–486 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Tang, C.-H., Lu, D.-Y., Tan, T.-W., Fu, W.-M. & Yang, R.-S. Ultrasound induces hypoxia-inducible factor 1 activation and inducible nitric oxide synthase expression through the integrin–integrin-linked kinase–Akt–mammalian target of rapamycin pathway in osteoblasts. J. Biol. Chem. 282, 25406–25415 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Partovian, C., Ju, R., Zhuang, Z.W., Martin, K.A. & Simons, M. Syndecan 4 regulates subcellular localization of mTOR complex 2 and Akt activation in a PKC-α-dependent manner in endothelial cells. Mol. Cell 32, 140–149 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kleinert, H., Schwarz, P.M. & Förstermann, U. Regulation of the expression of inducible nitric oxide synthase. Biol. Chem. 384, 1343–1364 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Garvey, E.P. et al. 1400W is a slow, tight-binding and highly selective inhibitor of inducible nitric oxide synthase in vitro and in vivo. J. Biol. Chem. 272, 4959–4963 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, N.V. et al. Fibulin 1 acts as a cofactor for the matrix metalloprotease ADAMTS1. J. Biol. Chem. 280, 34796–34804 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Shindo, T. et al. ADAMTS1: a metalloproteinase–disintegrin essential for normal growth, fertility, and organ morphology and function. J. Clin. Invest. 105, 1345–1352 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Le Goff, C. & Cormier-Daire, V. The ADAMTS(L) family and human genetic disorders. Hum. Mol. Genet. 20, R163–R167 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Hubmacher, D. & Apte, S.S. Genetic and functional linkage between ADAMTS superfamily proteins and fibrillin 1: a novel mechanism influencing microfibril assembly and function. Cell. Mol. Life Sci. 68, 3137–3148 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Escolano, A. et al. Specific calcineurin targeting in macrophages confers resistance to inflammation via MKP1 and p38. EMBO J. 33, 1117–1133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, X., Lu, H., Rateri, D.L., Cassis, L.A. & Daugherty, A. Conundrum of angiotensin II and TGF-β interactions in aortic aneurysms. Curr. Opin. Pharmacol. 13, 180–185 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cook, J.R. et al. Dimorphic effects of transforming-growth-factor-β signaling during aortic aneurysm progression in mice suggest a combinatorial therapy for Marfan syndrome. Arterioscler. Thromb. Vasc. Biol. 35, 911–917 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo, D.C. et al. Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute aortic dissections. Am. J. Hum. Genet. 93, 398–404 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Karimi, A. & Milewicz, D.M. Structure of the elastin–contractile units in the thoracic aorta and how genes that cause thoracic aortic aneurysms and dissections disrupt this structure. Can. J. Cardiol. 32, 26–34 (2016).

    Article  PubMed  Google Scholar 

  40. Kelwick, R., Desanlis, I., Wheeler, G.N. & Edwards, D.R. The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family. Genome Biol. 16, 113 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dan, H.C. et al. Akt-dependent regulation of NF-κB is controlled by mTOR and raptor in association with IKK. Genes Dev. 22, 1490–1500 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. O'Sullivan, S., Medina, C., Ledwidge, M., Radomski, M.W. & Gilmer, J.F. Nitric oxide–matrix metalloproteinase 9 interactions: biological and pharmacological significance—NO and MMP9 interactions. Biochim. Biophys. Acta 1843, 603–617 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Van Doren, S.R. Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol. 44-46, 224–231 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Segura, A.M. et al. Immunohistochemistry of matrix metalloproteinases and their inhibitors in thoracic aortic aneurysms and aortic valves of patients with Marfan's syndrome. Circulation 98, II331–337; disc. II337–338 (1998).

  45. Biddinger, A., Rocklin, M., Coselli, J. & Milewicz, D.M. Familial thoracic aortic dilatations and dissections: a case control study. J. Vasc. Surg. 25, 506–511 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Girardi, L.N. & Coselli, J.S. Inflammatory aneurysm of the ascending aorta and aortic arch. Ann. Thorac. Surg. 64, 251–253 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Roth, M., Lemke, P., Bohle, R.M., Klovekorn, W.P. & Bauer, E.P. Inflammatory aneurysm of the ascending thoracic aorta. J. Thorac. Cardiovasc. Surg. 123, 822–824 (2002).

    Article  PubMed  Google Scholar 

  48. Gao, Y. et al. A disintegrin and metalloproteinase with thrombospondin motif 1 (ADAMTS1) expression increases in acute aortic dissection. Sci. China Life Sci. 59, 59–67 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Johanning, J.M. et al. Nitric oxide in experimental aneurysm formation: early events and consequences of nitric oxide inhibition. Ann. Vasc. Surg. 16, 65–72 (2002).

    Article  PubMed  Google Scholar 

  50. Johanning, J.M., Franklin, D.P., Han, D.C., Carey, D.J. & Elmore, J.R. Inhibition of inducible nitric oxide synthase limits nitric oxide production and experimental aneurysm expansion. J. Vasc. Surg. 33, 579–586 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Kuhlencordt, P.J. et al. Accelerated atherosclerosis, aortic aneurysm formation and ischemic heart disease in apolipoprotein E and endothelial nitric oxide synthase double-knockout mice. Circulation 104, 448–454 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Lee, J.K., Borhani, M., Ennis, T.L., Upchurch, G.R. Jr. & Thompson, R.W. Experimental abdominal aortic aneurysms in mice lacking expression of inducible nitric oxide synthase. Arterioscler. Thromb. Vasc. Biol. 21, 1393–1401 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, J. et al. Inducible nitric oxide synthase is present in human abdominal aortic aneurysm and promotes oxidative vascular injury. J. Vasc. Surg. 38, 360–367 (2003).

    Article  PubMed  Google Scholar 

  54. Fukuda, S. et al. Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase. Circulation 101, 2532–2538 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Sadamasa, N., Nozaki, K. & Hashimoto, N. Disruption of gene for inducible nitric oxide synthase reduces progression of cerebral aneurysms. Stroke 34, 2980–2984 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Shores, J., Berger, K.R., Murphy, E.A. & Pyeritz, R.E. Progression of aortic dilatation and the benefit of long-term β-adrenergic blockade in Marfan's syndrome. N. Engl. J. Med. 330, 1335–1341 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. De Backer, J. et al. Marfan syndrome and related heritable thoracic aortic aneurysms and dissections. Curr. Pharm. Des. 21, 4061–4075 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Judge, D.P. et al. Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J. Clin. Invest. 114, 172–181 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Laubach, V.E., Shesely, E.G., Smithies, O. & Sherman, P.A. Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death. Proc. Natl. Acad. Sci. USA 92, 10688–10692 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Ibañez and G. Egea for reagents, S. Bartlett for English language editing, A.G. Arroyo, S. Lamas, J. Alegre-Cebollada and J. Ruiz-Cabello for critical reading of the manuscript and advice, and S. Pocock and J. Vazquez for advice on statistics. We also thank the CNIC histology facility, C. Velasco, A.V. Alonso and L. Flores for technical support. CNIC is supported by the Spanish Ministerio de Economía, Industria y Competitividad (MINECO) and the Pro-CNIC Foundation and is a Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505). Support was also provided by grants from MINECO (grants SAF2013-45258P (M.R.C.), SAF2012-34296 (J.M.R.) and SAF2015-636333R (J.M.R.)), Fundacion La Marato (TV3 grants 20151331 (J.M.R.) and 20151330 (A.E.)), CSIC (M.R.C.), the CIBERCV of Ministerio de Sanidad (grant CB16/11/00264; J.M.R.) and the Red de Investigación Cardiovascular (RIC) of Ministerio de Sanidad (grants RD12/0042/0022 (J.M.R.), RD12/0042/0021 (A.E.), RD12/0042/0024 (M.S.), RD12/0042/0056 (J.L.J.-B.) and RD12/0042/0018 (J.F.N.)), and by a Marie Skłodowska-Curie fellowship (E.J.R.) and FPI fellowships BES 2010-034552 (J.O.) and SVP-2013-067777 (S.V.). The cost of this publication has been paid in part with FEDER funds.

Author information

Authors and Affiliations

Authors

Contributions

M.R.C. and J.M.R conceived the study; J.O., N.M.-B., M.R.C. and J.M.R. designed the study and analyzed the data; J.O. and N.M.-B. performed most of the experiments, with contributions from E.J.R., S.V., L.I.C., R.A. and N.L.-V.; L.J.J.-B. supervised and analyzed the echography analysis; M.R., J.D.B., M.A.H. and J.F.N. provided human tissue samples; L.J.J.-B., M.R., A.M.B., M.A.H., D.M., A.E., M.S., J.F.N. and J.D.B. provided experimental support and ideas for the project; M.R.C. and J.M.R. wrote the manuscript with contributions from J.O. and N.M.-B. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Miguel R Campanero or Juan Miguel Redondo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Supplementary Figures 1–9 (PDF 27413 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oller, J., Méndez-Barbero, N., Ruiz, E. et al. Nitric oxide mediates aortic disease in mice deficient in the metalloprotease Adamts1 and in a mouse model of Marfan syndrome. Nat Med 23, 200–212 (2017). https://doi.org/10.1038/nm.4266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing