Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LIF receptor signaling limits immune-mediated demyelination by enhancing oligodendrocyte survival

Abstract

Multiple sclerosis (MS) is a disabling inflammatory demyelinating disease of the central nervous system (CNS) that primarily affects young adults. Available therapies can inhibit the inflammatory component of MS but do not suppress progressive clinical disability. An alternative approach would be to inhibit mechanisms that drive the neuropathology of MS, which often includes the death of oligodendrocytes, the cells responsible for myelinating the CNS. Identification of molecular mechanisms that mediate the stress response of oligodendrocytes to optimize their survival would serve this need. This study shows that the neurotrophic cytokine leukemia inhibitory factor (LIF) directly prevents oligodendrocyte death in animal models of MS. We also demonstrate that this therapeutic effect complements endogenous LIF receptor signaling, which already serves to limit oligodendrocyte loss during immune attack. Our results provide a novel approach for the treatment of MS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Therapeutic effect of LIF in EAE.
Figure 2: LIF potentiates oligodendroglial survival without influencing inflammatory infiltration.
Figure 3: LIF induces signal transduction in EAE spinal cord.
Figure 4: Oligodendrocytes upregulate the expression of LIFR-β and STAT-3 in EAE.
Figure 5: Deleterious effect of reduced gp130/LIFR-β expression in MOG EAE.

Similar content being viewed by others

References

  1. Australia's Health 2000. in The Seventh Biennial Health Report of the Australian Institute of Health and Welfare. (AIHW, Canberra, Australia 2000).

  2. Matthews, B. Symptoms and signs of multiple sclerosis. in Mc Alpine's Multiple Sclerosis, 3rd edn. (ed. Compston, D.A.S.) 145–190 (Harcourt Brace, London, 1998).

    Google Scholar 

  3. Luccinetti, C.F. et al. A quantitative analysis of oligodendrocytes in multiple sclerosis lesions: a study of 113 cases. Brain 122, 2279–2295 (1999).

    Article  Google Scholar 

  4. Luccinetti, C.F. et al. Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Ann. Neurol. 47 707–717 (2000).

    Article  Google Scholar 

  5. Compston, D.A.S. Treatment and management of multiple sclerosis. in Mc Alpine's Multiple Sclerosis, 3rd edn. (ed. Compston, D.A.S.) 437–499 (Harcourt Brace, London, 1998).

    Google Scholar 

  6. Kappos, L. et al. Placebo-controlled multicentre randomised trial of interferon β-1b in treatment of secondary progressive multiple sclerosis. Lancet 352, 1491–1497 (1998).

    Article  CAS  Google Scholar 

  7. Kuchroo, V.K. & Weiner, H.L. Antigen-driven regulation of experimental autoimmune encephalomyelitis. Res. Immunol. 149, 759–771 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Miller, S.D. & Shevach, E.M. Immunoregulation of experimental autoimmune encephalomyelitis: editorial overview. Res. Immunol. 149, 753–758 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Hisahara, S. et al. Targeted expression of baculovirus p35 caspase inhibitor in oligodendrocytes protects mice against autoimmune-mediated demyelination. EMBO J. 19, 341–348 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barres, B.A., Schmid, R., Sendtner M. & Raff, M.C. Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 118, 283–295 (1993)

    CAS  PubMed  Google Scholar 

  11. Barres, B.A. et al. Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70, 31–46 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Mayer, M., Bhakoo, K. & Noble, M. Ciliary neurotrophic factor and leukemia inhibitory factor promote the generation, maturation and survival of oligodendrocytes in vitro. Development 120, 143–153 (1994).

    CAS  PubMed  Google Scholar 

  13. Marmur, R., Kessler, J.A., Zhu, G., Gokhan, S. & Mehler, M.F. Differentiation of oligodendroglial progenitors derived from cortical multipotent cells requires extrinsic signals including activation of gp130/LIFβ receptors. J. Neurosci. 23, 9800–9811 (1998).

    Article  Google Scholar 

  14. Barres, B.A., Jacobson, M.D., Schmid, R., Sendtner M. & Raff, M.C. Does oligodendrocyte survival depend on axons? Curr. Biol. 3, 489–497 (1993)

    Article  CAS  PubMed  Google Scholar 

  15. Gard, A.L., Williams, W.N. & Burrell, M.R. Oligodendroblasts distinguished from O2-A glial progenitors by surface phenotype (O4+GalC) and response to cytokines using signal transducer LIFR-β. Dev. Biol. 167, 596–608 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Bugga, L., Gadient, R.A., Kwan, K., Stewart, C.L. & Patterson, P.H. Analysis of Neuronal and glial phenotypes in brains of mice deficient in leukemia inhibitory factor. J. Neurobiol. 36, 509–524 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Turnley, A.M. & Bartlett, P.F. Cytokines that signal through the leukemia inhibitory factor receptor-β complex in the Nervous system. J. Neurochem. 74, 889–899 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Stahl, N. & Yancopoulos, G.D. The tripartite CNTF receptor complex: activation and signalling involves components shared with other cytokines. J. Neurobiol. 25, 1454–1466 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. D'Souza, S.D., Alinauskas, K.A. & Antel, J.P. Ciliary neurotrophic factor protects human oligodendrocytes from tumour necrosis factor-mediated injury. J. Neurosci. Res. 43, 289–298 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Vartanian, T., Li, Y., Zhao, M. & Stefansson, K. Interferon-γ-induced oligodendrocyte cell death: Implications for the pathogenesis of multiple sclerosis. Mol. Med. 1, 732–743 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mathisen, P.M., Yu, M., Johnson, J.M. Drazba, J.A. & Tuohy, V.K. Treatment of experimental autoimmune encephalomyelitis with genetically modified memory T-cells. J. Exp. Med. 186, 159–164 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gow, A., Friedrich, V.L. Jr. & Lazzarini, R.A. Myelin-basic protein gene contains separate enhancers for oligodendrocyte and Schwann cell expression. J. Cell Biol. 119, 605–616 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Ware, C.B. et al. Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121, 1283–1299 (1995).

    CAS  PubMed  Google Scholar 

  24. Ernst, M. et al. Defective gp-130-mediated STAT signalling results in degenerative joint disease, gastrointestinal ulceration and failure of uterine impantation. J. Exp. Med. 194, 189–204 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bowman, T., Garcia, R., Turkson, J. & Jove, R. STAT's in oncogenesis. Oncogene (Reviews) 19, 2474–2488 (2000).

    Article  CAS  Google Scholar 

  26. Segal, R.A. & Greenberg, M.E. Intracellular signalling pathways activated by neurotrophic factors. Annu. Rev. Neurosci. 19, 463–489 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Fukunaga, K. & Miyamoto, E. Role of MAP kinase in neurons. Mol. Neurobiol. 16, 79–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Middleton, G. et al. Cytokine-induced nuclear factor κB activation promotes the survival of developing neurons. J. Cell Biol. 148, 325–332 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bonetti, B. et al. Activation of NF-κB and c-jun transcription factors in multiple sclerosis lesions. Implications for oligodendrocyte pathology. Am. J. Pathol. 155, 1433–1438 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bonetti, B., Pohl, J., Gao, Y.L. & Raine, C.S. Cell death during autoimmune demyelination: effector but not target cells are eliminated by apoptosis. J. Immunol. 159, 5733–5741 (1997).

    CAS  PubMed  Google Scholar 

  31. Shen, Y., Devgan, G., Darnell, J.E. & Bromberg, J.F. Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effect of activated Stat1. Proc. Nat. Acad. Sci. USA 98, 1543–1548 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morita, Y. et al. Signal transducers and activators of transcription (STAT)-induced STAT inhibitor-1 (SSI-1/suppressor of cytokine signalling-1 (SOCS-1) suppresses tumor necrosis factor alpha-induced cell death in fibroblasts. Proc. Nat. Acad. Sci. USA 97, 5405–5410 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Massaro, A.R., Soranzo, C. & Carnevale, A. Cerebrospinal-fluid ciliary neurotrophic factor in neurological patients. Eur. Neurol. 37, 243–246 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Giess, R. et al. Association of a null mutation in the CNTF gene with early onset of multiple sclerosis. Arch. Neurol. 59, 407–409 (2002).

    Article  PubMed  Google Scholar 

  35. Aloisi, F. et al. Regulation of leukemia inhibitory factor synthesis in cultured human astrocytes. J. Immunol. 152, 5022–5031 (1994).

    CAS  PubMed  Google Scholar 

  36. Banner, L.R., Moayeri, N.N. & Patterson, P.H. Leukemia inhibitory factor is expressed in astrocytes following cortical brain injury. Exp. Neurol. 147, 1–9 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Skaper, S.D. & Walsh, F.S. Neurotrophic molecules: strategies for designing effective therapeutic molecules in neurodegeneration. Mol. Cell. Neurosci. 12, 179–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Pozzilli, C. et al. Quantitative assessment of blood-brain barrier permeability in multiple sclerosis using 68-Ga-EDTA and positron emission tomography. J. Neurol. Neurosurg. Psychiatr. 51, 1058–1062 (1988).

    Article  CAS  Google Scholar 

  39. Slavin, A. et al. Induction of a multiple sclerosis-like disease in mice with an immunodominant epitope of myelin oligodendrocyte glycoprotein. Autoimmunity 28, 109–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Tuohy, V.K., Sobel, A.A., Lu, Z., Laursen, R.A. & Lees, M. Myelin proteolipid protein: minimum sequence requirements for active induction of autoimmune encephalomyelitis in SWR/J and SJL/J mice. J. Neuroimmunol. 39, 67–74 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Soilu-Hanninen, M. et al. Treatment of experimental autoimmune encephalomyelitis with antisense oligonucleotides against the low affinity neurotrophin receptor. J. Neurosci. Res. 60, 712–721 (2000).

    Article  Google Scholar 

  42. van der Veen, R.C., Trotter, J.L., Clark, H.B. & Kapp, J.A. The adoptive transfer of chronic experimental allergic encephalomyelitis with lymph node cells sensitised to myelin proteolipid protein. J. Neuroimmunol. 21, 183–191 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Hochrein, H., et al. Differential production of IL-12, IFN-α and IFN-γ by mouse dendritic cell subsets. J Immunol. 166, 5448–5455 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Brysha, M. et al. Suppressor of cytokine signalling-1 attenuates the duration of interferon gamma signal transduction in vitro and in vivo. J. Biol. Chem. 276, 22086–22089 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Abercombie, M. Estimation of nuclear populations from microtome sections. Anat. Rec. 94, 239–247 (1946).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the staff at our animal facilities for their help; R. Milekic for her secretarial support; and D. Advani for his support with graphic production. This work was funded in part by the Multiple Sclerosis Society of Australia and AMRAD. H.B. is the recipient of a National Health & Medical Research Council of Australia doctoral scholarship, and T.J.K. is the recipient of a Sylvia and Charles Viertel Charitable Trust Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor J. Kilpatrick.

Ethics declarations

Competing interests

A patent covering potential therapeutic applications of LIF in neuroscience, is held by AMRAD Corporation. P.B. is named as an inventor on this patent. AMRAD Corporation has provided financial support for aspects of the described work, and T.K. has acted as a paid consultant to advise AMRAD Corporation on applications of LIF in neuroscience. None of the authors have any financial interest in AMRAD Corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butzkueven, H., Zhang, JG., Soilu-Hanninen, M. et al. LIF receptor signaling limits immune-mediated demyelination by enhancing oligodendrocyte survival. Nat Med 8, 613–619 (2002). https://doi.org/10.1038/nm0602-613

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0602-613

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing