Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide

Abstract

The scalable and sustainable production of hydrogen fuel through water splitting demands efficient and robust Earth-abundant catalysts for the hydrogen evolution reaction (HER). Building on promising metal compounds with high HER catalytic activity, such as pyrite structure cobalt disulphide (CoS2), and substituting non-metal elements to tune the hydrogen adsorption free energy could lead to further improvements in catalytic activity. Here we present a combined theoretical and experimental study to establish ternary pyrite-type cobalt phosphosulphide (CoPS) as a high-performance Earth-abundant catalyst for electrochemical and photoelectrochemical hydrogen production. Nanostructured CoPS electrodes achieved a geometrical catalytic current density of 10 mA cm−2 at overpotentials as low as 48 mV, with outstanding long-term operational stability. Integrated photocathodes of CoPS on n+–p–p+ silicon micropyramids achieved photocurrents up to 35 mA cm−2 at 0 V versus the reversible hydrogen electrode (RHE), onset photovoltages as high as 450 mV versus RHE, and the most efficient solar-driven hydrogen generation from Earth-abundant systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of the ternary pyrite CoPS catalyst and the results from DFT calculations.
Figure 2: Structural characterization of the CoPS nanostructures.
Figure 3: Electrochemical characterization of CoPS film on graphite, CoPS NWs on graphite and CoPS NPls on carbon fibre paper electrodes for HER catalysis.
Figure 4: Photoelectrochemical hydrogen generation using integrated CoPS/Si photocathodes.

Similar content being viewed by others

References

  1. Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  Google Scholar 

  2. Nocera, D. G. The artificial leaf. Acc. Chem. Res. 45, 767–776 (2012).

    Article  CAS  Google Scholar 

  3. Turner, J. A. Sustainable hydrogen production. Science 305, 972–974 (2004).

    Article  CAS  Google Scholar 

  4. Faber, M. S. & Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 7, 3519–3542 (2014).

    Article  CAS  Google Scholar 

  5. Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).

    Article  CAS  Google Scholar 

  6. Benck, J. D., Hellstern, T. R., Kibsgaard, J., Chakthranont, P. & Jaramillo, T. F. Catalyzing the Hydrogen Evolution Reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4, 3957–3971 (2014).

    Article  CAS  Google Scholar 

  7. Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Mater. 12, 850–855 (2013).

    Article  CAS  Google Scholar 

  8. Lukowski, M. A. et al. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 7, 2608–2613 (2014).

    Article  CAS  Google Scholar 

  9. Merki, D., Fierro, S., Vrubel, H. & Hu, X. L. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011).

    Article  CAS  Google Scholar 

  10. Faber, M. S. et al. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 136, 10053–10061 (2014).

    Article  CAS  Google Scholar 

  11. Kong, D. S., Wang, H. T., Lu, Z. Y. & Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 136, 4897–4900 (2014).

    Article  CAS  Google Scholar 

  12. Popczun, E. J., Read, C. G., Roske, C. W., Lewis, N. S. & Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 53, 5427–5430 (2014).

    Article  CAS  Google Scholar 

  13. Liu, Q. et al. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem. 126, 6828–6832 (2014).

    Article  Google Scholar 

  14. Popczun, E. J. et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267–9270 (2013).

    Article  CAS  Google Scholar 

  15. Callejas, J. F. et al. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. ACS Nano 8, 11101–11107 (2014).

    Article  CAS  Google Scholar 

  16. Xiao, P. et al. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 7, 2624–2629 (2014).

    Article  CAS  Google Scholar 

  17. McEnaney, J. M. et al. Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution. Chem. Mater. 26, 4826–4831 (2014).

    Article  CAS  Google Scholar 

  18. Kibsgaard, J. & Jaramillo, T. F. Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 53, 14433–14437 (2014).

    Article  CAS  Google Scholar 

  19. McKone, J. R., Sadtler, B. F., Werlang, C. A., Lewis, N. S. & Gray, H. B. Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 3, 166–169 (2013).

    Article  CAS  Google Scholar 

  20. McKone, J. R., Lewis, N. S. & Gray, H. B. Will solar-driven water-splitting devices see the light of day? Chem. Mater. 26, 407–414 (2014).

    Article  CAS  Google Scholar 

  21. Faber, M. S., Park, K., Cabán-Acevedo, M., Santra, P. K. & Jin, S. Earth-abundant cobalt pyrite (CoS2) thin film on glass as a robust, high-performance counter electrode for quantum dot-sensitized solar cells. J. Phys. Chem. Lett. 4, 1843–1849 (2013).

    Article  CAS  Google Scholar 

  22. Faber, M. S., Lukowski, M. A., Ding, Q., Kaiser, N. S. & Jin, S. Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis. J. Phys. Chem. C 118, 21347–21356 (2014).

    Article  CAS  Google Scholar 

  23. Kong, D. S., Cha, J. J., Wang, H. T., Lee, H. R. & Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 6, 3553–3558 (2013).

    Article  CAS  Google Scholar 

  24. Cabán-Acevedo, M. et al. Ionization of high-density deep donor defect states explains the low photovoltage of iron pyrite single crystals. J. Am. Chem. Soc. 136, 17163–17179 (2014).

    Article  Google Scholar 

  25. Ennaoui, A. et al. Iron disulfide for solar energy conversion. Sol. Energy Mater. Sol. Cells 29, 289–370 (1993).

    Article  CAS  Google Scholar 

  26. Stiebritz, M. T. & Reiher, M. A unifying structural and electronic concept for Hmd and [FeFe] hydrogenase active sites. Inorg. Chem. 49, 5818–5823 (2010).

    Article  CAS  Google Scholar 

  27. Thauer, R. K. et al. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu. Rev. Biochem. 79, 507–536 (2010).

    Article  CAS  Google Scholar 

  28. Kubas, G. J. Metal Dihydrogen and s-Bond Complexes: Structure, Theory, and Reactivity (Springer Science & Business Media, 2001).

    Google Scholar 

  29. Ishida, K. & Nishizawa, T. The Co–P (cobalt–phosphorus) system. Bull. Alloy Phase Diagr. 11, 555–560 (1990).

    Article  CAS  Google Scholar 

  30. Hulliger, F. New compounds with cobaltite structure. Nature 198, 382–383 (1963).

    Article  CAS  Google Scholar 

  31. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005).

    Article  Google Scholar 

  32. Xia, X. et al. Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical–electrochemical properties. Nano Lett. 13, 4562–4568 (2013).

    Article  CAS  Google Scholar 

  33. Lyapin, S. G. et al. Raman studies of nearly half-metallic ferromagnetic CoS2 . J. Phys. Condens. Matter 26, 396001 (2014).

    Article  CAS  Google Scholar 

  34. Moulder, J. F., Stickle, W. F., Sobol, P. E. & Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, 1992).

    Google Scholar 

  35. Biesinger, M. C., Lau, L. W. M., Gerson, A. R. & Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257, 887–898 (2010).

    Article  CAS  Google Scholar 

  36. Okamoto, H. P–S (phosphorus–sulfur). J. Phase Equilib. 12, 706–707 (1991).

    Google Scholar 

  37. Dai, P. et al. Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition. Angew. Chem. Int. Ed. 52, 11119–11123 (2013).

    Article  CAS  Google Scholar 

  38. Boettcher, S. W. et al. Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 133, 1216–1219 (2011).

    Article  CAS  Google Scholar 

  39. Wang, H.-P. et al. Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions. ACS Nano 7, 9325–9335 (2013).

    Article  CAS  Google Scholar 

  40. Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Mater. 9, 239–244 (2010).

    Article  CAS  Google Scholar 

  41. Zhang, X. et al. Amorphous MoSxCly electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generation. Energy Environ. Sci. 8, 862–868 (2015).

    Article  CAS  Google Scholar 

  42. Ding, Q. et al. Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2 . J. Am. Chem. Soc. 136, 8504–8507 (2014).

    Article  CAS  Google Scholar 

  43. Huang, Z. et al. Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 8, 8121–8129 (2014).

    Article  CAS  Google Scholar 

  44. Hou, Y. et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nature Mater. 10, 434–438 (2011).

    Article  CAS  Google Scholar 

  45. Benck, J. D. et al. Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials. Adv. Energy Mater. 4, 1400739 (2014).

    Article  Google Scholar 

  46. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  47. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  49. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  50. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award DE-FG02-09ER46664. M.C.-A. thanks the NSF graduate Research Fellowship for support. J.R.S. is supported by the National Science Foundation Grant No. CHE-1362136 for the theoretical work here. H.-C.C., M.-L.T. and J.-H.H. are supported by KAUST baseline fund for design and fabrication of light-harvesting Si substrates.

Author information

Authors and Affiliations

Authors

Contributions

M.C.-A. and S.J. designed the experiments. M.C.-A. and M.L.S. carried out the synthesis of CoPS nanomaterials and electrochemical measurements. J.R.S. performed the density functional calculations and computational modelling. M.C.-A. and J.G.T. carried out the fabrication of photocathodes and photoelectrochemical measurements. Q.D. contributed to the photoelectrochemical performance optimization. H.-C.C., M.-L.T. and J.-H.H. designed and fabricated the n+–p–p+ micropyramid silicon substrates. M.C.-A. performed the structural characterization. M.C.-A. and S.J. wrote the manuscript and all authors commented on the manuscript.

Corresponding author

Correspondence to Song Jin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1441 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabán-Acevedo, M., Stone, M., Schmidt, J. et al. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nature Mater 14, 1245–1251 (2015). https://doi.org/10.1038/nmat4410

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4410

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing