Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strong evidence for d-electron spin transport at room temperature at a LaAlO3/SrTiO3 interface

Abstract

A d-orbital electron has an anisotropic electron orbital and is a source of magnetism. The realization of a two-dimensional electron gas (2DEG) embedded at a LaAlO3/SrTiO3 interface surprised researchers in materials and physical sciences because the 2DEG consists of 3d-electrons of Ti with extraordinarily large carrier mobility, even in the insulating oxide heterostructure. To date, a wide variety of physical phenomena, such as ferromagnetism and the quantum Hall effect, have been discovered in this 2DEG system, demonstrating the ability of d-electron 2DEG systems to provide a material platform for the study of interesting physics. However, because of both ferromagnetism and the Rashba field, long-range spin transport and the exploitation of spintronics functions have been believed difficult to implement in d-electron 2DEG systems. Here, we report the experimental demonstration of room-temperature spin transport in a d-electron-based 2DEG at a LaAlO3/SrTiO3 interface, where the spin relaxation length is about 300 nm. Our finding, which counters the conventional understandings of d-electron 2DEGs, highlights the spin-functionality of conductive oxide systems and opens the field of d-electron spintronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and current–voltage (IV) characteristics of the Py-LAO/STO-detection electrodes.
Figure 2: Angular dependences of the electromotive force of the inverse spin Hall effect.
Figure 3: Electromotive forces obtained from the Ta electrode sample.
Figure 4: Magnitudes of the ISHE-induced electric current as a function of the gap length between the Py and the Pt or Ta.
Figure 5: The Gilbert damping α of full-capping Py on the 2DEG at LAO/STO interfaces under spin-pumping conditions.

Similar content being viewed by others

References

  1. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  CAS  Google Scholar 

  2. Salluzo, M. et al. Orbital reconstruction and the two-dimensional electron gas at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 102, 166804 (2009).

    Article  Google Scholar 

  3. Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 6, 493–496 (2007).

    Article  CAS  Google Scholar 

  4. Ben Shalom, M. et al. Anisotropic magnetotransport at the SrTiO3/LaAlO3 interface. Phys. Rev. B 80, 140403(R) (2009).

    Article  Google Scholar 

  5. Ariando et al. Electronic phase separation at the LaAlO3/SrTiO3 interface. Nat. Commun. 2, 188 (2011).

    Article  CAS  Google Scholar 

  6. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    Article  CAS  Google Scholar 

  7. Li, L., Richter, C., Mannhart, J. & Ashoori, R. C. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nat. Phys. 7, 762–766 (2011).

    Article  CAS  Google Scholar 

  8. Bert, J. A. et al. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat. Phys. 7, 767–771 (2011).

    Article  CAS  Google Scholar 

  9. King, P. D. C. et al. Subband structure of a two-dimensional electron gas formed at the polar surface of the strong spin–orbit perovskite KTaO3 . Phys. Rev. Lett. 108, 117602 (2012).

    Article  CAS  Google Scholar 

  10. Zhong, Z., Tóth, A. & Held, K. Theory of spin–orbit coupling at LaAlO3/SrTiO3 interfaces and SrTiO3 surfaces. Phys. Rev. B 87, 161102(R) (2013).

    Article  Google Scholar 

  11. Kim, Y., Lutchyn, R. M. & Nayak, C. Origin and transport signatures of spin–orbit interactions in one- and two-dimensional SrTiO3-based heterostructures. Phys. Rev. B 87, 245121 (2013).

    Article  Google Scholar 

  12. Joshua, A., Ruhman, J., Pecker, S., Altman, E. & Ilani, S. Gate-tunable polarized phase of two-dimensional electrons at the LaAlO3/SrTiO3 interface. Proc. Natl Acad. Sci. USA 110, 9633–9638 (2013).

    Article  CAS  Google Scholar 

  13. Caviglia, A. D. et al. Tunable Rashba spin–orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010).

    Article  CAS  Google Scholar 

  14. Fête, A., Gariglio, S., Caviglia, A. D., Triscone, J.-M. & Gabay, M. Rashba induced magnetoconductance oscillations in the LaAlO3–SrTiO3 heterostructure. Phys. Rev. B 86, 201105(R) (2012).

    Article  Google Scholar 

  15. Liang, H. et al. Nonmonotonically tunable Rashba spin–orbit coupling by multiple-band filling control in SrTiO3-based interfacial d-electron gases. Phys. Rev. B 92, 075309 (2015).

    Article  Google Scholar 

  16. Hurand, S. et al. Field-effect control of superconductivity and Rashba spin–orbit coupling in top-gated LaAlO3/SrTiO3 devices. Sci. Rep. 5, 12751 (2015).

    CAS  Google Scholar 

  17. Bass, J. & Pratt, W. P. Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist’s critical review. J. Phys. Condens. Matter 19, 183201 (2007).

    Article  Google Scholar 

  18. Wang, H., Du, C., Chris Hammel, P. & Yang, F. Spin current and inverse spin Hall effect in ferromagnetic metals probed by Y3Fe5O12-based spin pumping. Appl. Phys. Lett. 104, 202405 (2014).

    Article  Google Scholar 

  19. Şahin, C. & Vignale, G. Flatté M. E. Derivation of effective spin–orbit Hamiltonians and spin lifetimes with application to SrTiO3 heterostructures. Phys. Rev. B 89, 155402 (2014).

    Article  Google Scholar 

  20. Reyren, N. et al. Gate-controlled spin injection at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 108, 186802 (2012).

    Article  CAS  Google Scholar 

  21. Aoki, Y. et al. Investigation of the inverted Hanle effect in highly doped Si. Phys. Rev. B 86, 081201(R) (2012).

    Article  Google Scholar 

  22. Swartz, A. G. et al. Spin-dependent transport across Co/LaAlO3/SrTiO3 heterojunctions. Appl. Phys. Lett. 105, 032406 (2014).

    Article  Google Scholar 

  23. Inoue, H. et al. Origin of the magnetoresistance in oxide tunnel junctions determined through electric polarization control of the interface. Phys. Rev. X 5, 041023 (2015).

    Google Scholar 

  24. Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostuructures. Science 313, 1942–1945 (2006).

    Article  CAS  Google Scholar 

  25. Sato, T., Shibuya, K., Ohnishi, T., Nishino, K. & Lippmaa, M. Fabrication of SrTiO3 field effect transistros with SrTiO3−δ source and drain electrodes. Jpn. J. Appl. Phys. 46, L515-L518 (2007).

    Google Scholar 

  26. Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

    Article  Google Scholar 

  27. Mizukami, S., Ando, Y. & Miyazaki, T. Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/Cu/Pt films. Phys. Rev. B 66, 104413 (2002).

    Article  Google Scholar 

  28. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  29. Arras, R., Ruiz, V. G., Pickett, W. E. & Pentcheva, R. Tuning the two-dimensional electron gas at the LaAlO3/SrTiO3(001) interface by metallic contacts. Phys. Rev. B 85, 125404 (2012).

    Article  Google Scholar 

  30. Miao, B. F., Huang, S. Y., Qu, D. & Chien, C. L. Inverse spin Hall effect in a ferromagnetic metal. Phys. Rev. Lett. 111, 066602 (2013).

    Article  CAS  Google Scholar 

  31. Tsukahara, A. et al. Self-induced inverse spin Hall effect in permalloy at room temperature. Phys. Rev. B 89, 235317 (2014).

    Article  Google Scholar 

  32. Chen, L., Ikeda, S., Matsukura, F. & Ohno, H. DC voltages in Py and Py/Pt under ferromagnetic resonance. Appl. Phys. Express 7, 013002 (2014).

    Article  Google Scholar 

  33. Azevedo, A. et al. Electrical detection of ferromagnetic resonance in single layers of permalloy: evidence of magnonic charge pumping. Phys. Rev. B 92, 024402 (2015).

    Article  Google Scholar 

  34. Tanaka, T. et al. Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals. Phys. Rev. B 77, 165117 (2008).

    Article  Google Scholar 

  35. Morota, M. et al. Indication of intrinsic spin Hall effect in 4d and 5d transition metals. Phys. Rev. B 83, 174405 (2011).

    Article  Google Scholar 

  36. Wang, H. L. et al. Scaling of spin hall angle in 3d, 4d, and 5d metals from Y3Fe5O12/metal spin pumping. Phys. Rev. Lett. 112, 197201 (2014).

    Article  CAS  Google Scholar 

  37. Ando, K. & Saitoh, E. Observation of the inverse spin Hall effect in silicon. Nat. Commun. 3, 629 (2012).

    Article  Google Scholar 

  38. Shikoh, E. Spin-pump-induced spin transport in p-type Si at room temperature. Phys. Rev. Lett. 110, 127201 (2013).

    Article  Google Scholar 

  39. Dushenko, S. et al. Experimental demonstration of room-temperature spin transport in n-type germanium epilayers. Phys. Rev. Lett. 114, 196602 (2015).

    Article  CAS  Google Scholar 

  40. Yamamoto, A., Ando, Y., Shinjo, T., Uemura, T. & Shiraishi, M. Spin transport and spin conversion in compound semiconductor with non-negligible spin–orbit interaction. Phys. Rev. B 91, 024417 (2015).

    Article  Google Scholar 

  41. Urban, R., Woltersdorf, G. & Heinrich, B. Gilbert damping in single and multilayer ultrathin films: role of interfaces in nonlocal spin dynamics. Phys. Rev. Lett. 87, 217204 (2001).

    Article  CAS  Google Scholar 

  42. Heinrich, B. et al. Spin pumping at the magnetic insulator (YIG)/normal metal (Au) interfaces. Phys. Rev. Lett. 107, 066604 (2011).

    Article  CAS  Google Scholar 

  43. Boone, C. T. et al. Spin transport parameters in metallic multilayers determined by ferromagnetic resonance measurements of spin-pumping. J. Appl. Phys. 113, 153906 (2013).

    Article  Google Scholar 

  44. Copie, O. et al. Towards two-dimensional metallic behavior at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 102, 216804 (2009).

    Article  CAS  Google Scholar 

  45. Sakudo, T. & Unoki, H. Dielectric properties of SrTiO3 at low temperatures. Phys. Rev. Lett. 26, 851–853 (1971).

    Article  CAS  Google Scholar 

  46. Kawasaki, M. et al. Atomic control of the SrTiO3 crystal surface. Science 266, 1540–1542 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, Innovative Area ‘Nano Spin Conversion Science’ (No. 26103003), Scientific Research (S) ‘Semiconductor Spincurrentronics’ (No. 16H0633), JSPS KAKENHI Grant (No. 16J00485), JSPS KAKENHI Grant (No. 25286506) and Elements Strategy Initiative to Form Core Research Center. One of the authors (R.O.) acknowledges JSPS Research Fellow.

Author information

Authors and Affiliations

Authors

Contributions

M.S., Y.A., R.O., S.T.B.G., H.H. and M.W. conceived and designed the experiments. T.Shinjo supervised the project. R.O., T.Susaki and K.M. fabricated the samples with the help of E.S. R.O. and S.K. performed the experiments. R.O., M.S., Y.A., T.Shinjo, S.K., M.W., H.H. and S.T.B.G. analyzed the data. R.O., M.S., Y.A., K.M., T.Susaki, M.W., H.H. and S.T.B.G. wrote the manuscript. All authors discussed the data and contributed to the manuscript.

Corresponding author

Correspondence to Masashi Shiraishi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 503 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohshima, R., Ando, Y., Matsuzaki, K. et al. Strong evidence for d-electron spin transport at room temperature at a LaAlO3/SrTiO3 interface. Nature Mater 16, 609–614 (2017). https://doi.org/10.1038/nmat4857

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4857

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing